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OUTLINE 

• Goals of STRATOS TG2 
• Overview of Flexible methods for modeling Functional Forms 

of Continuous Independent Variables (X) 
• Impact of X modeling on variables selection  
• Literature Review: Objectives & Methods  
• Literature Review: summary of Findings 
• Real-life & Simulated Examples of Drawbacks of methods 

currently used in Epidemiological/Clinical research 

• Plans for Future TG2 activities   
 



Main issues addressed by TG2 

 
TG2 focuses on 2 inter-related questions, 
common to all multivariable explanatory models 
: 
1. Selection of  ‘relevant’ Variables  
2. Choice of the Functional Form for the effect 

of each Continuous variable, i.e. Modeling of 
the effects of Continuous Independent 
Variables  
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FLEXIBLE MODELING of the  
Functional Forms for Continuous Predictors 

• Flexible Modeling techniques, proposed to 
estimate Non-linear (NL) effects of Continuous 
X’s, with different Smoothers, include e.g.:  

• Fractional Polynomials (FP) [Royston&Sauerbrei2008;Royston&Altman 1994] 

• Regression Splines  
     [Ramsay 1988; Abrahamowicz & MacKenzie 2007] 

• Restricted Cubic Splines  
     [Harrell (2001)] 

• Penalized Smoothing Splines  
     [Gray JASA 1992, 87: 942-951] 

• Generalized Additive Models (GAM)  
     [Hastie & Tibshirani , 1990] 

• ......+ several other types of (I- , P- ...etc) -Splines 
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Functional Forms for Continuous Independent Variables 

• To understand the role of Continuous Predictor (X) in an Explanatory Model (for a 
given outcome), we need to estimate the ‘etiologically correct’ Dose-Response 
function g(x) (a continuous, smooth transformation of X)  

• Conventional models usually A Priori assume that g(x) is Linear & include Un-
transformed X: g(x) = βx 

• Linearity assumption is convenient (effect of X summarized by a single β, 
parsimony = improved power), and often adequate 

• Yet, Linearity should not be imposed a priori: numerous examples of Non-Linear 
or Non-Monotone effects, e.g.: 

(i) BMI -> all-causes mortality (both Obese and Too Thin subjects have Increased 
Risks), 

(ii)  Age at diagnosis -> mortality in different cancers (Youngest subjects have more 
aggressive disease,  

       Oldest have increased risk of all-cause mortality)    
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GAM-estimated Non-linear effects of Risk Factors on logit of Coronary Heart 

Mortality [Abrahamowicz et al, AJE 1997] 
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Flexible Modeling of Continuous variables avoids ‘local biases’ of a Linear Function:   

Cholesterol (X) vs logit of Cardiovascular Death (Y) [Abrahamowicz et al, AJE 1997] 

• (a) & (b): full range of X; (c) & (d) X<250; (a) & (c) linear (βx);  

• (b) & (d) Smoothing Spline (GAM)  
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Inter-Dependence of the Selections of  
(1) Variables vs (2) Functional Forms 

• An additional CHALLENGE is that the results of 
    (1) Data-dependent selections of Independent 

Variables  (’Predictors’)  
    may Depend on  
    (2) decisions regarding Functional Forms of both:  
        (2a) the Predictor of Interest (X) & 
        (2b) Other Variables, correlated with X; 
    and vice versa  
 [Rosenberg PS, Katki H, Swanson CA, Stat Med 2003, 22: 3369-3381] 
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Objectives of Literature Review 
• OVERALL:  
     to Demonstrate the Need for STRATOS –initiated efforts to enhance 

the methodological standards of the analyses reported in current 
Applied research 

• Specific: 
    > Document the Methods and approaches actually applied in 2013  

in Empirical Observational studies published in major Clinical & 
Epidemiological Journals for: 

     (i) select independent variables into a Multivariable Model 
     (ii) Model the effects of Continuous Independent Variables 

    > Identify the Limitations & Drawbacks of the currently applied 
methods 



Literature Search Methods 
• We selected 2 subsets of Journals: 
• (A) 5 major Epidemiology journals: 
     American J Epi (AJE), Epidemiology, Epidemiology & Community 

Health (JECH), International J Epi (IJE), J Clinical Epi (JCE) 
     (B) 8 major ‘general’ Clinical journals:  
      Arch Int Med (AIM), BMJ, Circulation, JAMA, J Infect Dis (JID),  
      J Natl Cancer Inst (JNCI), Lancet, New Engl J Med (NEJM) 
...... 
 From Each Subset we selected, by Simple Random Sampling (NOT 

stratified by journal) 25 Papers, published in the 1st half of 2013, 
which met our Inclusion/Exclusion Criteria  

 We then Reviewed the Methods applied in each paper, focusing on 
issues most relevant for TG2 

 



Literature Search Methods 
• Inclusion Criteria:  
      > included Multivariable regression analyses,  
      >  At least 1 Continuous Independent Variables included in the model(s), 
      > electronic or print Publication Date: 1 January to 30 June 2013.  

 
• Exclusion Criteria:  
      > Analyses of Correlated data (e.g. GEE, mixed, frailty models),  
      > Experimental (Non-Observational) studies e.g. Clinical Trials,  
       > studies with the Effective Sample Size < 50. 
 
• Additional Search Criteria:  
     search strategy also targeted publications with at least 1 of the following 

“keywords” in the Abstract or Title: 
     model*, regression, estim*, multiv*, assoc* 



Distribution of the 25 Sampled (Eligible) Papers across the  
pre-Selected Journals  

AJE Epidemiology IJE JCE JECH 

11 
(44%) 

2 
(8%) 

3 
(12%) 

0 
(0%) 

9 
(36%) 

CLINICAL: 
 AIM BMJ Circulation JAMA JID JNCI Lancet NEJM 

2 
(8%) 

7 
(28%) 

4 
(16%) 

2 
(8%) 

2 
(8%) 

3 
(12%) 

1 
(4%) 

4 
(16%) 

           EPIDEMIOLOGY: 



Types of Regression Models used 

Multivariable Model (*) EPIDEMIOLOGY journals (**) 
(% / 25) 

CLINICAL journals (**) 
(% / 25) 

Logistic (Binary outcome) 12 (48%) 10 (40%) 

Cox PH 7   (28%) 14 (56%) 

Linear 9   (36%) 1 (4%) 

Poisson 1   (  4%) 1 (4%) 

Polytomous logistic 2   (  8%) 0 (0%) 

Inverse Gaussian (log-linear) 1   (  4%) 0 (0%) 

Relative risk (log-binomial) 0   (  0%) 1 (4%) 

TOTAL (*) 32 27 

(*) > 1 model in 11/50 
papers 

(**) NOT mutually 
exclusive 

(**) NOT mutually 
exclusive 



Criteria/Methods for Selecting Independent 
Variables into a Multivariable Model 

Enter text 

Enter text 

Criteria/Methods EPIDEMIOLOGY  
journals (% / 25) 

CLINICAL 
 journals (% / 25) 

Not Reported explicitly  11 (44%) 13 (52%) 

A priori (based on 
Substantive knowledge) 

 11 (44%)   5 (20%) 

A priori: DAG-based 
(Substantive knowledge) 

   -   1 (  4%) 

STAT: P<0.05 for “crude 
effect” in Bivariate 
analyses 

   1 (  4%)   4  (16%) 

STAT: P<0.05 for “Adjusted 
effect” in Full Multivariable 
model 

   1 (  4%)   1 (  4%) 

STAT: Stepwise selection     -   1 (  4%) 

STAT: > 10% Change in the 
Estimated ‘Exposure’ effect 

  1 (  4%)   - 



Variables Selection methods in EPI: 
Comparison with a 2008 Review 

• Walter & Tiemeir reviewed methods used for selection of 
covariates into multivariable models in 300 papers published 
in 2008 in 4 EPIDEMIOLOGY journals (AJE, Epidemiology, 
European J Epi, IJE): 

 

 W & T (300 EPI 
papers in 2008) 

Our Review (EPI 
papers in 2013) 

Not 
described.                  

105 (33%)    44% 

Prior knowledge    87 (27.7%)    44% 

Stepwise selection    59  (19.6%)      0% 

Change –in-
Estimate 
 

   44  (14.7%)      4% 

Other     9  (3%)      8% 



Criteria/Methods for Selecting Independent Variables in studies 
focusing on building Multivariable Explanatory/Etiologic Models  

Enter text 

Enter text 

Criteria/Methods 6 papers in EPIDEMIOLOGY  
journals (% / 6) 

8 papers in CLINICAL 
 journals (% / 8) 

Not Reported explicitly 2 (33.3%) 5 ( 62.5%) 

A priori (based on 
Substantive knowledge) 

4 (66.7%) - 

A priori: DAG-based 
(Substantive knowledge) 

- - 

STAT: P<0.05 for “crude 
effect” in Bivariate 
analyses 

- 2 (25.0%) 

STAT: P<0.05 for “Adjusted 
effect” in Full Multivariable 
model 

- 1 (12.5%) 

STAT: Stepwise selection  - - 

STAT: > 10% Change in the 
Estimated ‘Exposure’ effect 

- - 



Functional Forms for Modeling 
Continuous Independent Variables 

(**) Not-mutually Exclusive (some articles used > 1 method)   

Representation of 
Continuous Variables 
(NOT  Mutually Exclusive)  

EPIDEMIOLOGY  
journals (% / 25) 

CLINICAL 
 journals (% / 25) 

Dichotomized   7 (28%)     2 (  8%) 

Categorized  
(> 2 categories) 

19 (76% ) 
 

  14 (56%) 

Continuous, Un-
transformed (Linear effect 
assumed a priori)  

19 (76% )   22 (88%) 

A priori defined Parametric 
Transformation(s) (e.g. log 
or polynomial) 

   8 (32%)     1  ( 4%) 

Restricted Cubic Splines    1 ( 4%)      - 

Other Spline-based 
methods 

  -      - 

Fractional Polynomials    -      - 



Modeling of Age and BMI 
(shown Consistently to have Non-linear effects on 

many health outcomes) 
Several articles included in the Multivariable Analyses some “generic” 
Continuous Risk/Prognostic factors, such as Age & Body Mass Index (BMI) 

Enter text 

 
 Modeling AGE 

(EPI ) 
AGE 
(Clinical) 

BMI 
(EPI ) 

BMI 
(Clinical) 

Linear Only 1 1 

Linear &   
Categories 

2 

Dichotomi-
zed Only 

2 

Only > 2 
categories 



Functional Forms: representation of  
Continuous “Main Exposure” variables 

(**) Not-mutually Exclusive (some articles used > 1 method)   

Representation of 
Continuous Variables 
(NOT  Mutually Exclusive)  

12 papers  
in EPIDEMIOLOGY  
journals (% / 12) 

4 papers  
in CLINICAL 
 journals (% / 4) 

Dichotomized 1 ( 8.3%)   - 

Categorized  
(> 2 categories) 

6 ( 50 %) 4 (100%) 

Continuous, Un-
transformed (Linear effect 
assumed a priori)  

6 ( 50 %) - 

A priori defined Parametric 
Transformation(s) (e.g. log 
or polynomial) 

3 ( 25 %) - 

Restricted Cubic Splines 1 ( 8.3%)  - 

Other Spline-based 
methods 

- - 

Fractional Polynomials  - - 



 
 Example of Categorization of BMI effects:  
OR’s (95% CI) for 2 different Outcomes [1]  

  
 
 
 
 
 

•  [1] = [Maheswaran H, et al. Estimating utility values for major 
behavioral risk factors in England, JECH 2013, 67: 172-180]  

BMI Category Mobility problems 
(Non-Linearity) 

Daily Activities 
problems 
(Non-Monotonicity) 

<18.5      0.91  1.61 * 

[18.5; 25) [REF]        1     1 

[25;  30)     1.18  1.08 

[30; 40)   2.00 (1.7 – 2.3) ***  1.48 ** 

> 40   5.31 (3.9 – 7.2) ***  2.14 ** 



Comments on Modeling of  
Age and BMI 

• Yet, both Age & BMI have Non-Linear or even Non-
Monotone effects on different outcomes: 

(i) BMI: Non-Monotone relationships with risks (**) of e.g.:  
(1) CVD mortality [Abrahamowicz et al, AJE 1997], 

(2) Both Anxiety & Problems with Daily Activities [Maheswaran 

et al, JECH 2013]   
(**) Both Obese and Too Thin subjects have Increased Risks) 
(i)  Age at diagnosis -> mortality or recurrence in different 

cancers (Youngest subjects have more aggressive disease 
while  Oldest have increased risk of all-cause mortality)    

 



 
Drawbacks of Categorization of Continuous Predictors 

• Our  Review indicates that CATEGORIZATION of continuous independent 
variables is still Very Common in Both Clinical & Epidemiological research  

 
• Yet, Several Drawbacks of Categorization were demonstrated [1]:  
(i) Implausibility of the Step-Function effect & ‘Local Bias’ [2] 

(ii) Arbitrary cut-offs for categories often vary wildly across studies of the same 
predictor-outcome association [3], inducing spurious differences 

(iii) ‘Bad’ a Priori selection of cut-offs results in worse fit to data and increased Type 
II error 

(iv) If cut-offs selected a Posteriori: standard Inference is Not valid, and increased 
risk of Type I error and overfit bias [4] 

 
[1] Royston P, Altman DG, Sauerbrei W. Stat Med 2006, 25: 127-141. 
[2] Sauerbrei W, Royston P, Bojar H, et al. Br J Cancer  1999; 79: 1752-1760. 
[3] Malats N,Bustos A,Nascimento C et al. Lancet Oncology 2005, 6:678-686. 

[4] Schulgen G, Lausen B, Olsen JH, Schumacher M. AJE 1994,  140(2): 172-184 . 
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P-value    0.9                           0.2                               0.001 

Different Conclusions re: Stat. Significance  
 (depending on how continuous predictor is modeled) 

AGE as predictor of Death or Recurrence in Breast Cancer (adjusted) 
 [Sauerbrei et al, Br J Cancer 1999] 
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NODES as predictor of Death or Recurrence in Breast Cancer: 
Similar P-values but DIFFERENT ESTIMATES  [Sauerbrei et al, Br J Cancer 1999] 

P-value      0.001  0.001           0.001 











Residual Confounding 
• Confounder: 

 
 

• If not properly controlled for: 
– Residual Confounding 

• “leftover” confounding 
• Biased estimate of the main effect 

 
• 2 possible sources of residual confounding: 

– measurement error  
– mis-modeling of continuous variables 

Exposure 

Confounder 

Outcome 
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Significance of βexp by Analysis Strategy 
N=1000, Dichot Exp, βexp=0 

 

 

     

     

  

 

 

  

 

 

     

     

  

 

 

  

 

 

     

     

  

 

 

  

 

 

     

     

  

 

 

  

 

 

     

     

  

 

 

  



Residual Confounding Example  Maternal 
Smoking and Down Syndrome 

• Early investigations showed a protective effect.   
 

• residual confounding from maternal age?   
– Down syndrome births increase with maternal age.   
– Smoking is more common among younger women.     

 
• Chen et al. looked at smoking and Down syndrome and controlled for 

maternal age in three ways  [Chen et al. 1999]: 
– Crude association:  

smoking was statistically significantly protective (OR=0.8, 95% CI: 0.65-0.98) 
 

– Adjusting for dichotomous maternal age (<35 years, >35 years) :  
protective but not stat. sig.  (OR=0.87, 95% CI: 0.71-1.07) 

 
– Adjusting for continuous maternal age as a linear effect:   

no effect at all (OR=1.0, 95% CI: 0.82-1.24)  
 

 if maternal age is not properly adjusted for, it appears that smoking is 
protective 



Maternal smoking & Down Syndrome 
… continued 

• Actually, Down 
Syndrome risk is 
probably not 
linearly 
associated with 
maternal age 

Maternal Age vs. Down Syndrome

15 25 35 45

Maternal Age

lo
gi

t(D
S)

linear gam - 7df

Bray & 
Wright 1998 



Modeling Continuous X Non-Parametrically? 

 
     If X is continuous: 
     logit(Y)=s(X,4) 
     logit(Y)=s(X,4)+Z 
     logit(Y)=s(X,4)+s(Z,4) 
 
 

X Y

Z

X Y

Z
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Modeling the exposure non-parametrically (n=1000) 
Exposure has a linear effect on Disease, df=4 
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Plans for Future TG2 activities 

• To be Filled >> 
 

Suggestions are Welcome  
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Inter-Dependence of the Selections of  
(1) Variables vs (2) Functional Forms 

• The CHALLENGE is that the results of Data-dependent 
selections of (1) ‘significant’/relevant Predictors may 
depend on (2) choices regarding Functional Forms of 
both, (2a) the Predictor of Interest (X) & (2b) Other 
Variables, correlated with X, and vice versa  

 [Rosenberg PS, Katki H, Swanson CA, Stat Med 2003, 22: 3369-3381] 
 

 Examples of Inter-dependence: 
 (1) Impact of Inaccurate Modeling on Variable Selection: 

Incorrect Linearity Assumption increases Type II error 
for testing the (truly NL) effect of X, resulting in its un-
warranted exclusion  

      [e.g. Abrahamowicz et al 1997;  Gagnon et al Br J Cancer 2010]  
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Impact of Residual Confounding (due to Incorrect Modeling of 
Confounders): 

 
• Further Examples of Inter-dependence: 
>  (2) Failure to adjust for Important Confounders and their NL effects, increases either 

Type I or Type II error for testing: 
 
• (2a) Linearity of the effect of a continuous X [Binder et al 2013]; 
 

• (2b) Association between a binary Z and the outcome [Benedetti & Abrahamowicz 
2004] ; 

  

>  (3) in Survival analyses, a failure to account for NL effect of X increases type I error 

for a Time-dependent effect of X [Abrahamowicz & MacKenzie 2007]  
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Functional Forms for Modeling 
Continuous Independent Variables 

(**) Not-mutually Exclusive (some articles used > 1 method)   

Representation of 
Continuous Variables 
(NOT  Mutually Exclusive)  

EPIDEMIOLOGY  
journals (% / 25) 

CLINICAL 
 journals (% / 25) 

Dichotomized   7 (28%)     2 (  8%) 

Categorized  
(> 2 categories) 

19 (76% ) 
 

  14 (56%) 

Continuous, Un-
transformed (Linear effect 
assumed a priori)  

19 (76% )   22 (88%) 

A priori defined Parametric 
Transformation(s) (e.g. log 
or polynomial) 

   8 (32%)     1  ( 4%) 

Restricted Cubic Splines    1 ( 4%)      - 

Other Spline-based 
methods 

  -      - 

Fractional Polynomials    -      - 
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Types of Regression Models 
Multivariable Model EPIDEMIOLOGY  journals CLINICAL journals 
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COX  PH 

LINEAR  

POISSON 

OTHERS 



Types of Regression Models 

Multivariable Model EPIDEMIOLOGY  journals CLINICAL journals 

LOGISTIC 

COX  PH 

LINEAR  

POISSON 

OTHERS 

I’ve modified slide 11 (large table) to look like slide 9 or 10. If you need to 
replace any table, click in the top left or right corner so that a ‘frame’ 
surrounds the table and press delete. 
  
4 slides of figures and tables have been added at the end. 
 

Enter text 



Types of Regression Models 

Enter text 

Multivariable Model EPIDEMIOLOGY 
journals 

CLINICAL journals 

Logistic 12 

Cox PH 7 

Linear 9 

Poisson 1 

Polytomous logistic 2 

Inverse Gaussian (log-
linear) 

1 

GEE  (linear) 1 

TOTAL 33 
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