

STRengthening Analytical Thinking for Observational Studies: STRATOS initiative:

Study Design

Presented by SJW Evans.

Lead author N Pearce

TG5 Group: M Gail, D Altman, G Collins, L Duchateau,, P Sekula, M Woodward

Acknowledgments & Conflicts of Interest

European Commission appointed independent Member of Pharmacovigilance & Risk Assessment Committee of EU at the European Medicines Agency

Member of CIOMS Working Group on Meta-analysis for safety

LSHTM (but not SE) funded by several pharmaceutical companies

Member of expert working groups at the UK Medicines & Healthcare Products Regulatory Agency (MHRA)

All remarks are a personal viewpoint and have not been approved by other members of TG5

STRATOS

- STROBE has provided guidance on Reporting
- STRATOS is an attempt to improve conduct
 - ENCePP has guidance on methods-http://www.encepp.eu/ standards_and_guidances/documents/ ENCePPGuideofMethStandardsinPE_Rev4.pdf
- Guidance on reporting is like lighting up a room-not saying if it is clean
- Critical appraisal is saying if it is clean enough-
 - Operating theatre or coal shed?
- Guidance on conduct is to make sure the room is clean enough

Some principles

- single observational studies rarely definitive (or perfect!)
- Assessing epidemiologic evidence -> a process of triangulation across studies, aim to contribute to the pool of knowledge
- different populations, variety of designs, investigators, and methods,
- often involving meta-analysis (not "top of the hierarchy") & integration of data from variety of sources and study types
- obtain valid effect estimates in a particular population during a particular risk period

Purposes

1. Descriptive

- Disease oriented
- Intervention oriented
 - Intervention utilisation
 - E.g. Compliance with Summary of Product Characteristics (label)
 - Risk factor distribution
 - Spontaneous reports of adverse drug reactions

2. Comparative

Causal effects; benefits, comparative effectiveness, harms

Comparative studies

The main focus of epidemiology

- They will usually want to estimate causal effects;
 {Safety- demonstrated absence of harm}
 - Usually they focus on harms, but may also look at-
 - Benefits (often reduction in harm), comparative effectiveness,
 - Moves towards formal decision making for risk/benefit
 - Will require confirmation of benefit from RCTs in practice

Main Comparative designs

- Randomised Controlled Trials (RCTs)
 - Systematic reviews (SRs) of RCTs
- Cohort Studies
 - "Field" studies; registry-based; databases
- Case-control studies
 - "Field" studies; registry-based/aided; databases
- Distinguish incidence and prevalence in each

Time has only one direction

- In some senses all studies are based on a cohort
- RCTs have random allocation to treatment, then follow-up
- Observational studies have non-random allocation and follow-up (though if totally deterministic, then extra information outside study or strong, untestable, assumptions required to interpret them)
- The issues are
 - what is the source population?
 - what is the outcome?
 - (Incidence or prevalence)
 - How is the sampling done?

Study Design Options

- All epidemiological studies are (or should be) based on a particular population (the source population) followed over a particular period of time (the risk period)
- The different study design options differ only in how the source population is defined and how information is drawn from this population and time period

- Death
- other death
- lost to follow up

- "non-diseased"
- symptoms

/\/\

severe disease

Cohort studies

- define a source population exposed & unexposed
 - follow-up (FU) to event
- Not just in databases or even in large longitudinal cohort studies (ALSPAC, National Cohorts, 1958, 1970)
 - Some cohort studies (often registry-based) have no valid comparative groups)
- 'Self-Controlled Case Series' is a special case
- Case-cohort design {sample <100% non-cases}

Incidence and Prevalence

- Incidence is the number of new cases of the condition over a specified period of time
- *Prevalence* is the number of cases of the condition at a particular point in time

A Hypothetical Incidence Study

	Exposed	Non-exposed	Ratio
Cases	1,813	952	
Non-cases	8,187	9,048	
Total	10,000	10,000	
Person-years	90,635	95,163	
Incidence rate	0.0200	0.0100	2.00
Incidence proportion (risk)	0.1813	0.0952	1.90
Incidence odds	0.2214	0.1052	2.11

A Hypothetical Case-Control Study

	Exposed	Non-exposed	Odds
Cases	1,813	952	1,813/952
Controls	1,313	1,452	1,313/1,452
Odds	1,813/1,313	952/1,452	
Odds ratio			2.11

Odds Ratio

- OR=(1813/1313)/(952/1452) = 2.11
- This incidence case-control study yields the same estimate as would have been obtained by an incidence study but with a much smaller number of participants because we include all of the cases but only a sample of the non-cases

Methods of Sampling Controls

- From survivors (non-cases at end of follow-up) = cumulative sampling
- From source population = case-cohort sampling
- From person-years = density sampling

Methods of Sampling Controls

	Exposed	Non-exposed	Odds ratio
Cases	1,813	952	ratio
Controls			
from survivors	1,313	1,452	2.11
from source population	1,383	1,383	1.90
from person-year	1,349	1,416	2.00

Misconceptions re: Case-Control Studies

- Proceeds from effect (disease) to cause (exposure), i.e. reverse causality
- Inherently more prone to bias than cohort studies
- Odds ratio only approximately estimates the relative risk
- Depends on a "rare disease" assumption
- book by Keogh & Cox for modern views (Cambridge UP 2014)

Prevalence Case-Control Studies

This *prevalence case-control study* yields the same estimate as would have been obtained by a prevalence study but with a much smaller number of participants because we include all of the prevalent cases but only a *sample* of the non-cases

Sampling on outcome
No

Yes

Study outcome

Incidence

Incidence studies

Incidence case-control studies

Prevalence

Prevalence studies

Prevalence case-control studies

Strengths & weaknesses - RCTs

- RCTs strong for causal inference (but not perfect)
 - confounders not usually relevan t{but see Williamson et al Stat Med. 2014;
 33(5): 721–737}
 - Might be done in registries or databases
 - Staa TP et al. Pragmatic randomised trials using routine electronic health records: putting them to the test. BMJ. 2012;344:e55. also Pharmacoepidemiology session
 - New NEJM paper: http://www.nejm.org/doi/pdf/10.1056/NEJMoa1308789

Weaknesses

- Many biases can arise selective publication worst for pepi
- Costly in time & resources; unrepresentative?
- Short FU; small sample size for clinical harms (& benefits?)
- Elderly, pregnant, co-morbidity & co-prescription limited

Observational Medical Outcomes Partnership Third Annual Symposium

June 28, 2012 | Bethesda North Marriott Hotel & Conference Center | Bethesda, Maryland | http://omop.fnih.org

These slides are a selection from the OMOP symposium in June 2012

Used with permission
Thanks to Paul Stang & Patrick Ryan

See also special issue of *Drug Safety* 2013;36 Suppl 1:S3-4.

Ground truth for OMOP 2011/2012 experiments

•Literature review identified no powered studies with evidence of potential positive association

Drug not listed as 'causative agent' in Tisdale et al, 2010: "Drug-Induced Diseases"

New user cohort design applied to all test cases

New user cohort from OMOP (*Drug Safety* 2013)

Protocols

- Must have research question and objectives
- Should be registered e.ghttp://www.encepp.eu/encepp/studiesDatabase.jsp
 - Declaration of Helsinki requires registration
- Design specified in detail in protocol
- Statistical analysis plan should be included

Aspects of Design for comparison

Structure

- Baker MA et al. A vaccine study design selection framework ...rapid..
 monitoring. Am J Epidemiol. 2015;181:608-18
- Designs described- case-control, self-controlled risk interval, self-controlled case series method, case-crossover
- All used for vaccine safety surveillance
- Exploratory designs (& analysis) should be clearly described as exploratory

Selection criteria

- Perrio et al (2007) Pharmacoepidem. Drug Safe., 16: 329–336.
- Showed exclusion criteria widely used in pharmacoepidemiology but not well studied.
 - Exclusion criteria relating to data quality and validation were the most commonly applied (87% of publications), followed by patient characteristics (75%), disease-related (69%), exposure-related (38%) and miscellaneous (3%)

Is there a crisis in epidemiology?

- Stan Young "Any claim coming from an observational study is most likely to be wrong." Young, S. S. and Karr, A. (2011), Deming, data and observational studies. *Significance*, 8: 116–120.
- John Ioannidis- 2015. Video of lecture can be watched through this website-. www.lshtm.ac.uk/newsevents/events/2015/07/24th-bradford-hill-memorial-lecture
- Replication of studies is not done often enough
 - Open data less likely in epidemiology
 - Alsheikh-Ali AA et al. Public availability of published research data in high-impact journals. PLoS ONE 6, e24357 (2011).

STRATOS

- The challenge is to bring statistical thinking into observational research including design
- We cannot write a textbook on observational research
- We may have to look at where investigators go wrong but show how we can do it well