A new longitudinal time-varying measurement error model with application to physical activity assessment instruments in a large biomarker validation study

Victor Kipnis

Biometry National Cancer Institute, USA Collaborators:

Heather R. Bowles, NCI Raymond J. Carroll, Texas A&M University Kevin W. Dodd, NCI Laurence S. Freedman, Gertner Institute, Israel Douglas Midthune, NCI Lev Sirota, NCI

# Outline

- Introduction: Dynamic nature of physical activity (PA)
- Longitudinal studies: three different exposure effects and their interpretation
- Effect of exposure measurement error
- IDATA validation study
- Structure of measurement error in assessing time-varying PA and its implications in longitudinal studies
- Discussion

## PA and Health Outcomes

- PA has been linked to many health outcomes (cancer, diabetes, cardiovascular disease, obesity, quality of life)
- Epidemiologic studies usually concentrate on *long-term* average ("*usual*") PA assessed by *self-report* questionnaires
- Recent intervention studies have been focusing on repeated *objective measures* of *short-term* PA done by accelerometers
- Complications measurement error in assessment of PA should be taken into account in the analysis

## PA and Longitudinal Studies

- PA is characterized by both short-term (e.g., month to month) and long-term (over years) changes
- Dynamic nature of PA is especially critical in intervention studies but may also be important in long-term epi studies
- To properly analyze *individual* relationships of PA with health outcomes it is crucial to carry out longitudinal studies

# Longitudinal Studies

- Defining feature: measurement are taken of the same subjects repeatedly over time
- Primary goal: analysis of the effect of subject-specific exposure on this subject's health outcome
- Analyzing such within-subject effect removes extraneous variation among subjects because they serve as their own controls



![](_page_7_Figure_0.jpeg)

## Longitudinal Studies: Three Effects

• Longitudinal studies generally lead to *three effects* of exposure on outcome:

- within-subject (individual level) effect of the exposure for a particular subject on this subject's outcome

- *between-subject effect* of the subject's mean exposure on mean outcome

*– marginal (population-average) effect* of the exposure in the population on mean population's outcome

# Statistical Analysis of Longitudinal Studies

- Distinctive feature: observations on the same subject are typically positively *correlated*, and this correlation needs to be accounted for in the statistical analysis
- Major statistical approach: mixed effects models that include both *fixed* and *random* effects

## Statistical Analysis: Mixed Effects Models

- *Fixed effects* are population-specific functions of covariates that contribute to temporal trends
- *Random effects* are subject-specific:
  - they are constant within but vary across subjects
- they account for between-subject heterogeneity in temporal trends and induce within-subject correlation structure

# Linear Mixed Model (LMMs)

- **Traditional assumption** in mixed models: random effects are independent of covariates
- In LMMs, the traditional assumption leads to all three effects being the same
- Yet, Neuhaus & Kalbfleisch (1998) empirically demonstrated that three effects could be different in LMMs
- Three exposure effects are *always* different if random effects in LMM are *correlated* with exposure (e.g., Neuhaus & McGulloch, 2006)

- Let  $X_{ij}$ ,  $Y_{ij}$  denote the exposure and outcome for person i, i = 1, ..., n, time  $j = 1, ..., m_i$
- Simple linear mixed effects model

$$Y_{ij} = \beta_o + \beta_x X_{ij} + u_{yi} + \epsilon_{yij}$$

• Exposure may vary with time and be specified as

$$X_{ij} = \alpha_0 + u_{xi} + \epsilon_{xij}$$

• Joint mixed model:

$$Y_{ij} = \beta_o + \beta_x X_{ij} + u_{yi} + \epsilon_{yij}$$

$$X_{ij} = \alpha_0 + u_{xi} + \epsilon_{xij}$$

• Traditional assumption that  $u_{yi}$  is independent of  $X_{ij}$  may be too strong: both random effects  $u_{yi}$  and  $u_{xi}$  represent heterogeneity between subjects in response and exposure, respectively, and therefore may be *correlated* 

• Correlation between  $u_{yi}$  and  $u_{xi}$  leads to linear regression

$$u_{yi} = \frac{\sigma_{u_{x,y}}}{\sigma_{u_x}^2} u_{xi} + \eta_{yi}, \ \eta_{yi} \perp u_{xi}$$

• Denoting subject-specific mean  $\mu_{xi} = \alpha_0 + u_{xi}$ , the model can be reparameterized as LMM with *two exposures*  $\mu_{xi}$  and  $\epsilon_{xij}$  and independent random effect  $\eta_{yi}$ 

$$Y_{ij} = \beta_0 + \left(\beta_x + \frac{\sigma_{u_{x,y}}}{\sigma_{u_x}^2}\right)\mu_{xi} + \beta_x\epsilon_{xij} + \eta_{yi} + \epsilon_{yij}$$

• Generally, there are *three different effects* of  $x_{ij}$  on  $y_{ij}$ :

- within-subject 
$$\beta_W = \frac{cov(X_{ij}, Y_{ij}|\mu_{xi})}{var(X_{ij}|\mu_{xi})} = \beta_x$$

- between-subject 
$$\beta_B = \frac{cov(X_{ij}, Y_{ij}|\epsilon_{xij})}{var(X_{ij}|\epsilon_{xij})} = \beta_x + \frac{\sigma_{u_x,y}}{\sigma_{u_x}^2}$$

- marginal 
$$\beta_M = \frac{cov(X_{ij}, Y_{ij})}{var(X_{ij})} = \beta_x + \frac{\sigma_{u_{x,y}}}{\sigma_x^2};$$

• It follows that 
$$\beta_M = \frac{\sigma_{\epsilon_x}^2}{\sigma_{u_x}^2 + \sigma_{\epsilon_x}^2} \beta_W + \frac{\sigma_{u_x}^2}{\sigma_{u_x}^2 + \sigma_{\epsilon_x}^2} \beta_B$$

## Effect of Exposure Measurement Error

- Measurement error (ME) in exposure leads to:
  - biases in estimated effects
  - reduced statistical power to detect the effects
  - invalid statistical tests/confidence intervals in presence of other error-prone covariates
- It is critical to evaluate the structure of ME and its effect

# Interactive Diet and Activity Tracking in AARP (IDATA)

- IDATA is a validation study of 1100 participants (550 men and 550 women), aged 50-74, with a variety of diet, PA, and biomarker measurements over a course of one year
- Focus here: evaluation of ME structure in assessing withinmonth usual MET-hours (kcal/kg/day) with
- CHAMPS questionnaire over the previous month
- ACT24 web-based 24-hour recall
- ActiGraph GTX3 accelerometer (first 4 full days out of 7)

# IDATA Study

- Time period in time-varying longitudinal model: one month
- Unbiased biomarker for within-period MET-hours: doubly labeled water (DLW) divided by weight
- By design, participants had 6 ACT24, 2 ActiGraph,
  2 CHAMPS, 2 DLW, and 3 BMI measurements evenly spread over one year

### Measurement Error Model in IDATA

- For person *i*, denote true and measured log MET-hours in time period *t* as  $X_{it}$  and  $W_{it}$ , respectively; with log BMI, age, and calendar month as covariates  $Z_{it}$
- Measurement error model is specified as

$$W_{it} = \gamma_o + \gamma_x X_{it} + \boldsymbol{\gamma}'_z \boldsymbol{Z}_t + u_{wi} + e_{wit},$$

 $\gamma_x$  = true exposure-related bias (flattened slope)  $u_{wi}$  = person-specific bias  $e_{wit}$  = within-person error

#### Parameter Estimates for Men in IDATA Study

![](_page_20_Figure_1.jpeg)

### Parameter Estimates for Women in IDATA Study

![](_page_21_Figure_1.jpeg)

## <u>Effects of Measurement Error Components</u> <u>in Longitudinal Studies</u>

- The impact of different ME components varies depending on the estimated effect of interest in the outcome model:
  - flattened slope *exaggerates* each of three effects
  - person-specific bias *does not* affect within-subject effect, but *attenuates* between-subject and marginal effects
  - within-person random error *attenuates* within-subject and marginal effects, but *does not* affect between-subject effect

# Effects of Measurement Error Components in Longitudinal Studies

- Using the mean of repeated measurements in the *same timeperiod* (here one month) decreases within-person error but leaves exposure-related and person-specific biases unchanged
- This affects bias in estimated within-subject and marginal but not between-subject effect
- Full adjustment for within-person error by statistical means leads to *exaggeration* of the within-subject effect by a factor equal to the inverse of flattened slope

### Attenuation Factors for Men in IDATA Study

![](_page_24_Figure_1.jpeg)

### Attenuation Factors for Women in IDATA Study

![](_page_25_Figure_1.jpeg)

### Attenuation Factors for Men in IDATA Study

![](_page_26_Figure_1.jpeg)

### Attenuation Factors for Women in IDATA Study

![](_page_27_Figure_1.jpeg)

### Adjusting Within – Person Effect for Within – Person Error in Men

![](_page_28_Figure_1.jpeg)

### Adjusting Within – Person Effect for Within – Person Error in Women

![](_page_29_Figure_1.jpeg)

# Discussion (1)

- All 3 instruments involve flattened slope, person-specific biases, and within-person random errors
- Flattened slope and person-specific biases are the largest for CHAMPS and the smallest for ActiGraph accelerometer
- Within-person random errors are 3 (women) to 5 (men) times larger in ACT24 and  $\sim 20\%$  larger in CHAMPS compared to ActiGraph accelerometer

## Discussion (2)

- Attenuation factors for all three effects show a definite advantage of using ActiGraph accelerometer vs self-report ACT24 or CHAMPS
- Repeat applications of the instruments impacts results ONLY if applied in the same time period and requires care:
- adjustment for within-person error (assuming instrument is unbiased) leads to *exaggeration* of the within-subject effect by a factor equal to the inverse of flattened slope

## Conclusions

- PA is a complex multidimensional behavior with relevant FITT (frequency, intensity, time, type) dimensions
- Energy expenditure (METS) is *only one aspect* of PA for which we have a reference (unbiased) biomarker
- Although accelerometer is a clear winner in measuring PA energy expenditure, it is important to examine other aspects while being aware of corresponding measurement error and its impact