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Disclaimers
 The views expressed represent my own and do not 

necessarily represent views or policies of the U.S. National 
Cancer Institute.
 Examples I cite are all based on true stories or published 

articles, but I have made minor modifications in some 
cases to conceal identities.
 My examples focus on omics-based tests, but the principles 

apply more generally, particularly for high-dimensional data 



3

My perspective
 Statistical/scientific reviewer of NCI-sponsored clinical trials 

and studies for development and validation of biomarker-
and omics-based tests, e.g., for precision medicine 
 Journal editorial board member
 Statistical reviewer for numerous biomedical journals
 Statistical collaborator in research projects involving 

biomarkers and omics tests
 Co-chair of STRATOS High-Dimensional Data (HDD) 

Topic Group (“TG9”)
3
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Translation from omics discoveries to clinically 
useful omics-based tests to guide clinical care

4

High-throughput omics assays (“high-dimensional”)

Apply 
computational 
methods to 
derive 
models, risk 
scores, 
classifiers

“Omics 
predictor”

“Omics” is a term 
encompassing 
multiple molecular 
disciplines, which 
involve the 
characterization of 
global sets of 
biological 
molecules such as 
DNAs, RNAs, 
proteins, and 
metabolites.” 



Skepticism, disappointment, and scandal
OvaSure diagnostic 
test for ovarian cancer

Genomic predictors (chemo-sensitivity 
& prognosis) developed by Anil Potti at 
Duke University 

Lizzie Buchen, Nature, v. 471, March 24, 2011

Eugenie Samuel Reich, Nature, v. 469, 
January 13, 2011 5

. . . AND MANY OTHER 
FAILURES THAT WE 
NEVER HEAR ABOUT



Institute of Medicine initiates a study to 
examine field of translational omics

Jocelyn Kaiser
Science, v. 335, March 30, 2012

http://www.iom.edu/Reports/2012/Evolution-of-Translational-Omics.aspx 6

http://www.iom.edu/Reports/2012/Evolution-of-Translational-Omics.aspx
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“Plane crash investigation” approach
To improve the integrity and quality of a system we must 
understand how it can fail
 Some examples are from a research misconduct scandal involving 

omics research conducted by Anil Potti at Duke University.
 > 100 patients enrolled on trials using flawed chemosensitivity predictors
 All information I cite for these examples is in the public domain.  

 Other examples I have encountered over the last few years through  
collaborations, reviewing protocols and journal submissions, and as a 
reader of published papers reporting omics studies.
 It is not my intent to imply that research misconduct was involved in 

these other examples.



Understanding sources of
irreproducible research

Dissemination

Results 
interpretation 
& reporting

Data analysis & 
derived results

Design & 
primary data 
generation

8



Design considerations
Patient characteristics, potential confounding
 Published example:  “Differential exoprotease activities confer 

tumor-specific serum peptidome patterns”  
 100% sensitive and specific for prostate cancer
 Patient characteristics:
 Cancer cases:  mean age 67 yrs, 100% male
 Controls:  mean age 35 yrs, 58% women

 Journal correspondence:  Authors cite unpublished data that 
patterns not associated with age or sex.  
 Is that convincing?
 Would pattern even be associated with prostate cancer in a new 

study?
9



Pairwise correlations between gene expression profiles (arrays of 
thousands of gene expression measures per tumor)

ID1/ID2 1063 2094 3756 3781 4941 5725 6941 7461
1063 1 0.85 0.87 0.87 0.89 0.88 0.87 0.85
2094 1 0.88 0.86 0.85 0.87 0.88 0.87
3756 1 0.89 0.87 0.86 0.89 0.87
3781 1 0.88 0.89 0.88 0.86
4941 1 0.99 0.89 0.87
5725 1 0.87 0.89
6941 1 0.89
7461 1

Does anything look odd?

Data generation
Specimen or data handling errors

(Disguised real example) 10



Data Set 1
Data Set 2 = Data Set 1 
+ additional assay runs

ID X1 X2 X3 X4 X5
2094 1 48 75 781 57

1063 1 34 36 686 42

5221 1 21 51 592 32

9089 1 79 66 328 52

3781 1 37 49 903 49

ID X1 X2 X3 X4 X5
1063 1 48 781 75 57

2094 1 34 686 36 42

3781 1 21 592 51 32

5221 1 79 328 66 52

9089 1 37 903 49 49

3756 2 291 54 569 48

4941 2 428 61 747 58

5725 2 644 42 581 63

5894 2 503 83 470 50

8503 2 743 36 655 44

Anything suspicious?
Data generation
Data handling errors

(Disguised real example)

11
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Data generation
Assay artifacts & batch effects
 Impact of changes in assay procedures, reagents,  

equipment, or technician during predictor development
Dramatic effect of change in RNA extraction procedure & 
reagents on tumor gene expression microarray profiles

Extraction method 1 Extraction method 2

215 tumor samples

116 genes 
included in a 
genomic 
predictor of 
treatment 
response

(Shown with 
permission from 
an NIH grantee)



Data generation
Assay artifacts & batch effects

Figure 2 from Leek et al 2010, Nature Rev Genet

Example:  2nd generation sequence data from the 1000 Genomes 
Project. Standardized coverage data represented.  Same facility, same platform.

Horizontal 
lines divide 
by date.

13



Data generation
Impact of changes in assay

MINDACT Trial

“A change in the RNA-extraction solution that was used in the calculation of the 70-gene 
signature (a change that was not communicated by the manufacturer) caused a temporary 
shift in the risk calculation from May 24, 2009, to January 30, 2010, at which time the issue 
was discovered and rectified . . . 
Because of this shift, 162 patients who had been identified as being at high genomic risk 
were subsequently identified as being at low genomic risk with the use of the correct . . .
The clinical effect of this risk revision was that an additional 28 patients received 
chemotherapy before the results were corrected, although no patient was undertreated.”

Cardoso F et al., N Engl J Med 
2016;375:717-729

14
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Massive data corruption

Several clinical trials using the Potti genomic predictors based on 
these data to select patient therapy were launched at Duke.

Each block of columns = 
one drug (reported across 
different publications)

Each row = one cell line

Within each block of 
columns, a given row 
should be either all blue 
(sensitive) or all red 
(resistant)

Drugs

Cell lines

Information source

Baggerly & 
Coombes 2009 
Annals of Applied 
Statistics
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By the time of data analysis it might 
already be too late. . .

Data are

Data are worthless and 
potentially dangerous if 
there are major errors or 
“hardwired” biases (e.g., 
due to confounding 
factors).
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 Engagement of statisticians in the scientific process.
 Better training of scientists and statisticians in basic 

study design principles.
 Early involvement of statisticians and others with 

experimental design expertise early in research projects
 Ask basic questions about potential for bias and 

confounding (including batch effects).
 Full description and more consideration of patient 

characteristics and specimen sources and handling.

(cont →)

Recommendations:  Design and data generation
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 Education on proper data management practices, 
including locked databases for prospective clinical 
studies.  

 Reliable systems for data management and 
documentation of data provenance.

 Specifically designate qualified individuals responsible for 
data management.

 Better documentation of data – meta-data as well as data 
dictionaries defining individual variables

Recommendations:  Design and data generation 
(cont.)
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Data analysis
Ability to run statistical software 
≠ statistical expertise

Are You My 
Statistician?
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Data analysis
Appropriateness of cited statistical methods

“The docetaxel sensitivity model developed from the 
NCI-60 panel again predicted sensitivity in this 
independent dataset, also with an accuracy exceeding 
80% (P<0.001, log-rank test; Fig. 1c, right).” ???
(Potti et al, Nature Medicine 2006)



Data analysis
Many varieties of 
multiple testing
 Multiple explanatory 

variables
 Multiple endpoints
 Multiple subgroups
 Multiple cutpoints applied 

to continuous variables
 Multiple models with 

multiple variables

Number of 
independent tests
(α = 0.05 per test)

Probability observe 
≥ 1 statistically 
significant (p<0.05) 
result

1 0.05

2 0.10

3 0.14

4 0.19

5 0.23

6 0.26

7 0.30

8 0.34

9 0.37

10 0.40

21
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Data analysis
Key considerations in predictor or model development
 Quality of data (clinical & omics) used to develop and validate 

predictor models (might not be “clinical trials grade” data)
 Appropriate statistical approaches for model/predictor 

development and performance assessment 
 Meaningful “validation”
 Define clinical context and use
 Patient population
 Clinical use - prognostic, predictive (treatment selection), etc.
 “Locked down” test
 Pre-specified performance criteria (not just a significant p-value)



Data analysis
Common pitfalls in omics model development
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 A statistical model is OVER-FIT when it describes random 
error or noise instead of the true underlying relationship
 Excessively complex (too many parameters or predictor variables)
 Will have poor predictive performance on independent data set
 Naively fit omics predictors will always be overfit

 RE-SUBSTITUTION is the naïve evaluation of model 
performance by “plugging in” same data used to build it
 Other more subtle forms of re-substitution (combining training & test, 

with covariates, comparative, partial) 
(J Biopharm Statistics 2016;26(6):1098-1110)



Data analysis
Avoid pitfall of model over-fitting

Biomarker

Risk
x

x

x
x

x
x

xComplex  
model fit to 
noisy data True relationship

Noise

Noise

• Evaluation of a model’s fit by data re-substitution will suggest fit is perfect
• In high dimensions (e.g., omics data), naively fit models are almost always 

over-fit and such models will rarely validate on an independent data set 24
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 Full re-substitution (plug in exactly same data used to build predictor)
 Comparing to a re-substitution estimate
 Partial re-substitution (selection of informative variables on full data set with 

cross-validation post-selection)
 Combining training and test sets
 Resubstitution with covariate adjustment

Simon et al, J Natl Cancer Inst 2003;95:14-18
Subramanian & Simon, J Natl Cancer Inst 2010;102:464-474
Simon & Freidlin, [Correspondence] J Natl Cancer Inst 2012;103(5):445
Subramanian & Simon, Contemporary Clinical Trials 2013;36:636–641
Sachs & McShane, J Biopharm Statistics 2016;26(6):1098-1110

Data analysis
Avoid various forms of resubstitution



Data analysis
Avoid re-substitution 

“A 15-gene signature [for lung 
cancer] separated OBS patients 
[no chemotherapy after surgery] 
into high-risk and low-risk 
subgroups with significantly 
different survival (hazard ratio 
[HR], 15.02; 95% CI, 5.12 to 
44.04; P <.001.” 

RE-SUBSTITUTION!

If this large separation in survival curves was real, the signature 
would have clinical utility.  Patients designated as low risk could 
confidently avoid toxic chemotherapy.

All stages, OBS, n=62
HR=15.02, p<.001
95% CI=(5.12,44.04)

(J Clin Oncol 2010;28:4417-4424)

LOW risk

HIGH risk

26



Data analysis:  What was validated? 
“ . . . prognostic 
effect [of 15-gene
signature] was 
VALIDATED 
consistently in four 
separate 
microarray data 
sets (total 356 
stage IB to II 
patients without 
adjuvant 
treatment).”

Data set 1:
HR=2.36, p=.026

Data set 2:
HR=2.01, p=.08

Data set 3:
HR=3.18, p=.006

Data set 4:
HR=2.02, p=.033

Endpoint:   Disease-specific survival (DSS) → Overall survival (OS)
Timescale:  0 to 9 years → 0 to 60 months (5 years)
HR:  15.02→ ≈ 2-3 5-yr DSS ≈ 90% → 5-yr OS < 80%
Mixture of disease stages?  Adjustment for standard covariates?

(J Clin Oncol 2010;28:4417-4424)

LOW risk

HIGH risk

LOW risk

LOW risk LOW risk

HIGH risk

HIGH risk
HIGH risk

27



Data analysis
Use internal validation during model development

Original Kaplan-Meier curves 
(DSS) showing prognostic ability 
of 15-gene signature in OBS arm, 
using re-substitution
(J Clin Oncol 2010;28:4417-4424)

All stages, OBS, n=62
HR=15.02, p<.001
95% CI=(5.12,44.04)

LOW risk

HIGH risk

28

Reproduced (approx.) Kaplan-Meier curves (DSS) 
showing prognostic ability of 15-gene signature in OBS 
arm, using re-substitution (A) and cross-validation (B)

(J Biopharm Statistics 2016;26(6):1098-1110)

RE-SUBSTITUTION CROSS-VALIDATION

NEARLY 
UNBIASED

EXTREMELY
BIASED
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Data analysis:  
Avoid comparisons with resubstitution estimates

Prognostic classifier fit using gene 
expression microarray data from clinical 
trial arm on which patients received no 
adjuvant chemotherapy (resubstitution)

Does the genomic predictor identify groups of patients who benefit 
differently from adjuvant chemotherapy?  Can’t conclude anything.

HIGH risk NO CHEMO
CHEMO

CHEMO

LOW risk

NO CHEMO
HR=0.33 (0.17-0.63), p<0.001 HR=3.67 (1.22-11.06), p=0.013

(n=36)

(n=31)

(n=31)

(n=35)

LOW risk

HIGH risk
HR=15.02 (5.12-44.04), p<0.001

(n=31)

(n=31)

NO CHEMO



Data analysis
Avoid partial re-substitution
 Published example:  “Metabolomic detection of early-stage ovarian cancer”
 100% accuracy in cohort (46 early stage (I/II) serous epithelial ovarian 

cancer (EOC) patients and 49 age-matched normal healthy controls)
 “Using all 255 metabolic features, a first SVM model was generated . . . 

(accuracy 62%; specificity 57%; sensitivity 67%). Since SVM models 
built upon large datasets typically contain uninformative features . . . We 
employed . . . . . .RFE method to select features that distinguished the 
early-staged EOC samples from controls with optimal accuracy. . . . 
100% accuracy . . . obtained with . . . 16 features. . . accuracy of these 
16 metabolites was independently validated by orthogonal partial least 
squares-discriminant analysis (oPLS-DA) using a variety of cross-
validation approaches” (details in Supplement)

30
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Data analysis
Avoid combining training & test sets

 Combining Training data (used to develop genomic score) with Test data 
destroys the validation and interpretability of the adjusted effects

 Resubstitution with covariate adjustment:  Nowhere in the paper was a 
multivariable analysis based solely on the Test set presented.

Variable HR 95% CI P
Genomic score 2.43 1.94 – 3.06 < 0.001
Stand. molec. factor 1 1.77 1.41 – 2.22 < 0.001
Stand. molec. factor 2 0.66 0.48 – 0.93 0.02
Age group, ≥ 60 yrs vs < 60 yrs 2.22 1.76 – 2.79 < 0.001

Multivariable Model for OS (Training and Test sets combined)



Requirements for rigorous predictor validation
 Must be able to COMPLETELY SPECIFY a LOCKED-

DOWN predictor or algorithm
 The lockdown includes all steps in the data pre-processing 

and prediction algorithm (including computer code).
 A gene list alone does not specify a predictor
 Must be able to apply the predictor to ONE 

INDIVIDUAL/PATIENT AT A TIME

(cont →) 32



Requirements for rigorous predictor validation
(cont.)
 Need PRE-SPECIFIED PERFORMANCE CRITERIA. 
 Not just a significant p-value!
 Ideally, INDEPENDENT VALIDATION DATA generated 

from specimens collected at a different time, or in a 
different place, and according to the pre-specified 
collection protocol.
 Assays for the validation specimen set should be run at a 

different time or in a different laboratory according to the 
PRE-SPECIFIED ASSAY protocol (including quality 
rejection criteria).

(cont →) 33



Requirements for rigorous predictor validation 
(cont.)
 Individuals who developed/have interest in the predictor 

must remain completely BLINDED to the validation data.
 The validation DATA SHOULD NOT BE CHANGED and

DATA VALUES SHOULD NOT BE SELECTIVELY 
ELIMINATED after observing the performance of the 
predictor.
 PREDICTOR SHOULD NOT BE ADJUSTED (including 

cut-points) after its performance has been observed on any 
part of the validation data. Otherwise, the validation is 
compromised and a new validation may be required.

34



35

 Individuals with adequate statistical and bioinformatics 
expertise should be engaged in the research

 Understand where the data came from and how they 
might have been preprocessed or filtered

 Run quality checks on data prior to analysis
 Inconsistent or illogical values
 Examples:  Disease relapse after death, male with ovarian cancer

 Values out of expected range
 Often indicate mix-up of measurement units or missing data codes

 Define clinically meaningful goals and pre-specify 
appropriate performance criteria

Recommendations:  Data analysis



Results reporting and interpretation
Example:  “Diagnostic markers for early detection of 
ovarian cancer”
 Six proteins are used to compare the plasma from ovarian cancer 

cases and healthy controls.
 Claim: 95.3% sensitivity and 99.4% specificity
 Patient characteristics:
 Cancer cases:  High risk of cancer, with masses
 Controls:  Healthy, seen in screening clinic

 Markers include “stress” proteins that could differ in compared 
groups.  
 Explanation for discrimination ability?

36



Results reporting and interpretation
“Diagnostic markers for early detection of ovarian cancer” 
(continued)
To the Editors:  <Authors>  “claim the ability to detect ovarian cancer early and 
with 95.3% sensitivity and 99.4% specificity. Several serious methodologic
issues lead us to conclude that these figures are greatly exaggerated. The 
training set specimens, derived from one cohort, were used to fit several 
classifiers, and the test set specimens. . .were used to estimate their 
performance. The accuracy reported in their conclusion, however, was 
determined from the combined data and from the classifier that did best in 
the test set. This violates fundamental principles of statistical analysis, . . . Had 
they properly . . . they would have had to report a lower sensitivity of either 
84% or 88% at lower 95% specificity. The analysis they chose to highlight is 
inappropriate and misleading.”  

37



Results reporting and interpretation
“Diagnostic markers for early detection of ovarian cancer” 
(continued)
To the Editors: “The published report is noteworthy for the performance 
characteristics . . . based on the combined training and test sets, all ovarian 
cancers combined: sensitivity, 95.3%; specificity, 99.4%; positive predictive 
value (PPV), 99.3%; and negative predictive value, 99.2%. However, the PPV 
estimate of 99.3% . . . based on a prevalence of ovarian cancer near 50%. The 
prevalence of ovarian cancer in any screened population will be much smaller 
than 50%. . . . correction . . . assumed that the prevalence of ovarian cancer in 
the screened population was 1 of 2,500 (0.04%) and recalculated the PPV to be 
only 6.5%. . . . only 1 in 15 women with a positive test result will, in fact, have 
ovarian cancer
Given that this assay is currently being marketed to health care providers and 
consumers as a validated ovarian cancer screening test, this difference is not 
academic.”       

38
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 Term “validation” should not be used unless 
accompanied by appropriate explanation of what is 
being validated

 Approaches ensuring rigor of the validation should be 
described (e.g., blinding, honest broker)

 Journals and funding agencies need to ensure that 
there are qualified statistical reviewers for manuscripts 
and grant applications 

Recommendations:  Results reporting and 
interpretation 
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Results dissemination
Once a “desirable” (but wrong) result has been 
obtained by a flawed analysis approach or data 
dredging, it’s hard to pull it back.
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Results dissemination “...we can now predict with 
high accuracy which patients 
may benefit most from 
chemotherapy.”

Genomic predictors generated advertising, patent applications, diagnostics 
company start-ups, consulting arrangements

What accuracy measure? 
Sensitivity? PPV???
75%? 80%?

Some predictors were 
developed on cell lines or 
different tumor types.
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Nature Medicine 2006
NEJM 2006

J Clin Oncol 2007

J Clin Oncol 2007

Results dissemination
Dozens of papers from Potti group published in top 
journals
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 As a requirement for access to resources such as 
specimens and funding for research, there should be a 
commitment to report results completely and 
transparently, regardless of findings
 Avoid publication bias and selective reporting

 Data and computer code should be made available for 
others to examine

Recommendations:  Dissemination
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Accountability

44

Jan. 27, 2011:  After initiation of a research misconduct investigation, the Duke 
vice-chancellor for clinical research and the head of the Institute for Genome 
Science and Policy jointly send a letter to all co-authors of Potti:  
“In keeping with our institutional commitment and mandate to maintain public 
trust, . . . assure that you can identify the person or persons responsible 
for the data management, statistical analysis, and interpretation of the 
results.
Based on the requirements for authorship, we ask you to attest that you are 
confident that these elements of the manuscript are appropriate, 
accurate, and free of improper manipulation.
If you cannot do so, we will work with you to reach the point of either assuring 
that the paper and its results are reasonable or retracting the article. . . In order 
to ensure that we as an institution as well as others in the scientific community 
can have confidence in the integrity of these papers, we will select a small 
number at random for a detailed review.”



Consequences of poor practices in omics 
research
 Possible harm to patients if flawed omics-based test is 

used in a clinical trial or in clinical practice
 Waste of research effort and resources
 Damage to professional reputations, including for  

“innocent” members of lab or research team
 Lawsuits – patients or others misled about value of the 

research
 Prosecution for violation of regulatory requirements for use 

of an investigational medical device
45
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Recommendations:  Accountability & responsibility 

 In any study, identify qualified individuals who will be 
accountable for laboratory work (specimens and assays), 
clinical data collection, data management, statistical and 
bioinformatic analyses, and interpretation of the results.

 Identify in manuscripts submitted for publication the specific 
contributions made  by each author.

 Ensure that omics predictors to be used in clinical trials or to 
guide patient care undergo sufficient independent review and  
trials receive proper oversight (institutional and regulatory) as 
routinely expected for drug trials.
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Recommended reading
http://www.iom.edu/Reports/2012

/Evolution-of-Translational-
Omics.aspx

NCI criteria for the use of omics-based predictors in clinical trials: 
McShane et al. Nature 2013;502:317-320 (checklist)
McShane et al. BMC Medicine 2013;11:220 (explanation & elaboration)

47

Nearing completion:  TG9 overview paper “Statistical analysis of 
high-dimensional biomedical data: A gentle introduction to analytical 
goals, common approaches and challenges” 

http://www.iom.edu/Reports/2012/Evolution-of-Translational-Omics.aspx


www.cancer.gov www.cancer.gov/espanol

THANK YOU!
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