

CAUSAL INFERENCE FOR SURVIVAL OUTCOMES: A CENSORED EDITION

Vanessa Didelez

Bianca de Stavola, Els Goetghebeur, Saskia le Cessie, Ingeborg Waernbaum

STRATOS – TG7 – Causal Inference

SER - virtual - 2021

Formulating Causal Questions

(Goetghebeur et al, 2020, Stat in Med)

To get a causal answer we need to start with a causal question!

- 1. Define the treatment
- 2. Define the outcome
- Specify population(s) of interest.
- Formalise potential outcomes (POs)
- 5. Specify target causal effect, i.e. the *estimand*, as a (summary) contrast between the PO-distributions
- 6. (Assumptions identifying estimand from available data
- 7. Statistical inference with suitable methods
- 8. (Evaluate plausibility of assumptions / sensitivity analyses

Target Trial

(Parra et al, 2020, arXiv:2011.11771)

A general principle to elicit & specify a causal question

- The ideal (hypothetical) trial that would answer the research question
 - possibly disregarding practical, ethical, financial constraints
 - ... but not disregarding laws of physics (no "turning back time")
- Especially useful in time-dependent situations
 - fix time 'zero'
 - prevent immortal time bias etc.

Motivating Example

- End-stage renal disease: which renal replacement therapy (RRT)?
- Pre-emptive transplant (PKT) vs "start with dialysis"?
 - binary point treatment
 - a bit like ITT
- Wanted: "effect" on time to all-cause mortality starting from RRT
 - exact definition of estimand?
 - no competing events here
- Most studies on the topic suffer from avoidable biases
 (Parra et al, 2020 arXiv:2011.11771)

Motivating Example

Aim:

- Want to mimic RCT (target trial):
 as if individuals randomised to treatment (PKT) / control (dialysis)
 - need plausible assumptions
 - & suitable methods

- *A* = binary **point** treatment
- Y = outcome (general)
- Y_a = potential outcome if we set A= a by (well-defined) intervention
- Common causal contrasts (estimands):

(total) average effect: $E(Y_1) - E(Y_0)$

effect on the treated: $E(Y_1 | A=1) - E(Y_0 | A=1)$

Causal Inference - Basics

- Assumptions:
 - Causal consistency & positivity, no interference
 - No Unmeasured Confounding (NUC)
 - Some (semi-)parametric model
- ⇒ Identification
- Many methods for estimation
 - outcome regression, stratification / matching, IPTW, DR
 - with sufficient set of covariates, possibly summarised in propensity score
 - check: overlap and balance!

Now: Survival Outcome

Lnibm

- Outcome Y = T = time-to-event
- What's different?
 - Censoring
 - for some units we only know: the event did not occur in some period
 - Dynamics things happen over time (including treatment)
 - 'mean' not a good summary?
- ⇒ May want different causal estimands
 - assumptions?
 - methods?

Desirable estimand?

Risk differences at relevant times

$$P(T_1 > t) - P(T_0 > t), \qquad t \text{ in } [0, \mathcal{I}]$$

- i.e. difference in *(marginal)* survival functions of POs
- Interpretation: risk difference for no event by time t had random patient been treated versus not
 - ≈ total average causal effects for meaningful time points
 - could easily be by baseline subgroups (no further details today)

Survival Outcome - Estimands

Hazard scale? Hazard ratio (HR) / contrast of hazards - popular

With potential outcomes:

$$\lambda_a(t) = \lim_{h \to 0} \frac{1}{h} P(t \le T_a < t + h(T_a \ge t))$$

- i.e. hazard function in arm 'a' of our target trial
- Contrasts of $\lambda_1(t)$ vs. $\lambda_0(t)$ are conditional on possibly different 'subgroups' $\{T_1 \ge t\}$ and $\{T_0 \ge t\}$
 - survivors at a given time t in the two arms not necessarily comparable anymore even in an RCT

Risks & Hazards – Pros and Cons

- Difficult to interpret causal effects on the hazard scale correctly
 - no such thing as 'the' causal effect
 - 'effect reversals' between hazard and risk scale possible (Martinussen et al., 2020 LIDA)
 - ⇒ must be aware & take into account for correct interpretation of contrasts of hazards

- But $\lambda_a(t)$ as whole function of t: one-to-one relation with $P(T_a > t)^*$
 - ⇒ hazards still useful modelling tool (+ model checking etc. well-established)
 - especially to deal with censoring & include relevant covariates

Estimands - Summary

3 PS

- We like & recommend contrasts on risk scale
 - direct clinical interpretation
 - but may use hazard models as a tool to get there
- There may sometimes be specific reasons to choose hazard contrasts as causal estimands...
 - ... but don't let it be just by 'default' or because 'everyone does it'
- Many other estimands not enough time today
 - 'speed' scale (accelerated failure time models) useful for timevarying treatments
 - restricted mean survival time etc.

Survival Outcome - Estimands

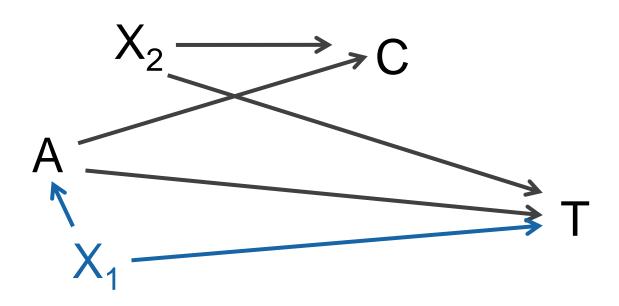
What about censoring?

- Want estimand 'outside' of a study setting, i.e. 'without' censoring
- Target trial: has no censoring at all or at least same complete follow-up \$\mathcal{T}\$ for everyone
 - aka 'elimination of censoring', or 'complete populations' (TG8)
 - careful with special 'censoring' events: drop-out, treatment switching, competing events
 - relevant target trial without these types of intercurrent events?
 - similar *reasoning & assumptions* as with counterfactual treatment!
 - in particular: think about common causes of censoring and outcome event

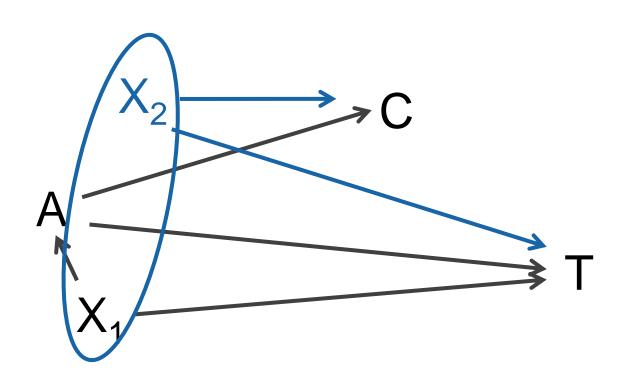
Key Assumptions

- **NUC**: X_1 = sufficient covariate information regarding treatment assignment confounding
- X_2 = sufficient covariate information regarding possibly (timevarying) 'common causes' of censoring and event
 - ≈ ensure 'conditionally independent' censoring (TG8)
- Methods must use X₁ & X₂ jointly
 - (X₁ and X₂ can overlap)

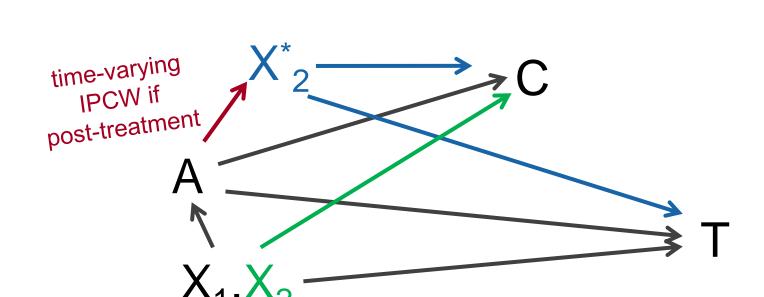
Key Assumptions - DAG



Key Assumptions - DAG



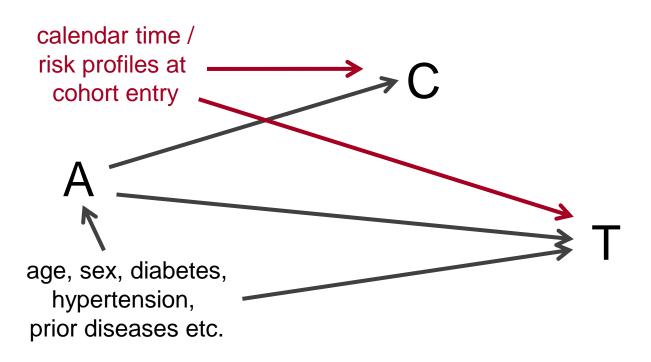
Key Assumptions - DAG



17

RRT – PKT Example

(Parra et al, 2020, arXiv:2011.11771)



Methods

Model-based marginal counterfactual survival curves:

- (Sufficiently) flexible hazard models
 - possibly separately for treatment groups
 - include both sets of baseline covariates X₁ and X₂
 - + transformation to risk scale
 - + standardisation

Software:

- R: stdReg (Sjolander & Dahlqwist); Stata: stpm2_standsurv (Lambert)
- discrete-time-methods: plenty of code (Hernan & Robins, book)

Methods

Weighted Kaplan-Meier curves:

- Inverse probability of treatment & censoring weighting
- Note: including covariates in IPTW does not suffice if also needed to adjust for confounding of censoring
 - ⇒ need IPCW too (time-varying) (Roysland, Didelez et al., 202?- tba)

Software:

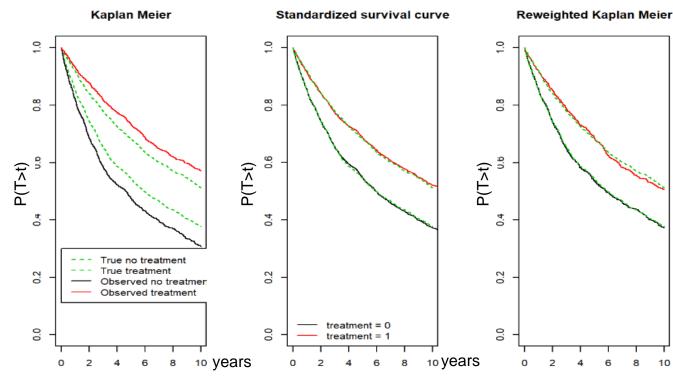
• R: survival library (*Therneau*), R: ipw (*van der Wal et al, 2011*), R: ahw (*Ryalen, github*); core Stata

Simulated data inspired by RRT data (but somewhat simplified)

N=2000

Confounding by observed covariates & no censoring

(very basic programming)



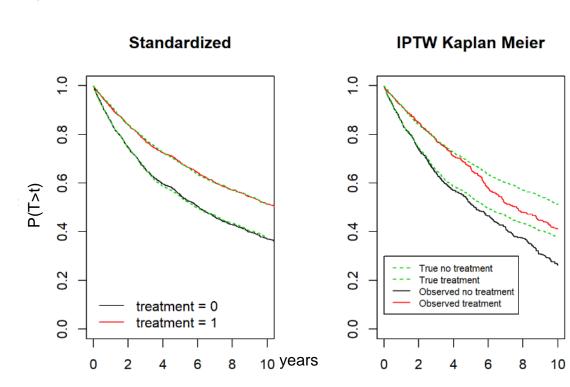
Simulated data inspired by RRT data (but somewhat simplified)

N=2000

Confounding by observed covariates & with censoring

Only using IPTW not good enough

Some improvement with IPCW (not shown)



- Can & should choose meaningful, clinically relevant causal estimands for survival outcomes
 - target trial should also address censoring
- Hazard models well-established only need to be suitably transformed
- Think 'causally' about censoring to justify key assumptions
 - in addition to 'no unmeasured confounding'
- More details on (simple) implementation / software in paper forthcoming!

Contact

Vanessa Didelez Leibniz Institute for Prevention Research and Epidemiology – BIPS Achterstraße 30 D-28359 Bremen didelez@leibniz-bips.de

