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Aims: Overview of the principles that guide current developments in
causal inference

> First guidance paper:
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Formulating causal questions and principled
statistical answers
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> Short courses

> Website: ofcaus.org
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Basic Principles

> To find a causal answer, start with a causal question.
Then:

@ specify exposure, outcome, population of interest, target
causal effects (e.g. using potential outcomes)

@ state assumptions for identification and estimation of effects
from the data

© interpret results cautiously, aided by sensitivity analyses of
assumptions.

3/18



Causal inference for survival outcomes
LO\/er\/iew

Basic Principles

> To find a causal answer, start with a causal question.
Then:

@ specify exposure, outcome, population of interest, target
causal effects (e.g. using potential outcomes)

@ state assumptions for identification and estimation of effects
from the data

© interpret results cautiously, aided by sensitivity analyses of
assumptions.

> These are indeed the principles guiding RCTs and, for
observational studies, are referred to as “target trial
emulation” (TTE).

3/18



Causal inference for survival outcomes
LO\/er\/iew

Basic Principles

> To find a causal answer, start with a causal question.
Then:

@ specify exposure, outcome, population of interest, target
causal effects (e.g. using potential outcomes)
@ state assumptions for identification and estimation of effects
from the data
@ interpret results cautiously, aided by sensitivity analyses of
assumptions.
> These are indeed the principles guiding RCTs and, for
observational studies, are referred to as “target trial
emulation” (TTE).

> A major advantage of TTE: avoidance of errors in data
manipulation (e.g. immortal time bias, treatment assignment).
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Potential Outcomes and Estimands

For a binary exposure A and an outcome Y, let:

> Y, be the potential outcome if we set A to take the value a by
a well-defined (hypothetical) intervention.
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Potential OQutcomes and Estimands

For a binary exposure A and an outcome Y, let:
> Y, be the potential outcome if we set A to take the value a by
a well-defined (hypothetical) intervention.
> Causal effects (“estimands”) can then be defined e.g. :
- ACE=E(Y;) — E(Yo)
- ATT=E(Vi|A=1) - E(Yo|A=1)
- etc.
> These are comparisons of alternative worlds.
> ldentification requires linking observed data to these
hypothetical quantities e.g. invoking assumptions of no
interference, consistency, and positivity.
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Potential OQutcomes and Estimands

For a binary exposure A and an outcome Y, let:
> Y, be the potential outcome if we set A to take the value a by
a well-defined (hypothetical) intervention.

> Causal effects (“estimands”) can then be defined e.g. :
- ACE=E(Y;) — E(Yo)
- ATT=E(Vi|A=1) = E(Yo]A=1)
- etc.

> These are comparisons of alternative worlds.

> ldentification requires linking observed data to these
hypothetical quantities e.g. invoking assumptions of no
interference, consistency, and positivity.

> Choice of estimation methods: each requiring additional
assumptions (e.g. no unmeasured confounding, correct
(semi-)parametric models).
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Time-to-event outcomes

> Well known challenges:

- Time origin and scale: from birth/entry/surgery?
- Censoring: information on whether event is observed at the
end.
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Time-to-event outcomes

> Well known challenges:

- Time origin and scale: from birth/entry/surgery?
- Censoring: information on whether event is observed at the
end.

> Discussed by TG8-Survival Analysis:
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Analysis of time-to-event for observational studies:
Guidance to the use of intensity models
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Which aspects of time should we focus on when
comparing alternative worlds?

6/ 18



Causal inference for survival outcomes
LEstimands

Estimands

Let T, be the potential survival time if we set A to take the value a by a
well-defined (hypothetical) intervention.

(A) Risk scale:
Differences in survival probabilities at relevant times

ACE(t) = P(Ty > t)-P(To > t), t in[0,7]

This is the difference in (marginal) survival functions of POs,

> Interpretation:

risk difference for no event by time t had random patient been
treated versus not.
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Estimands

(B) Hazard scale:
Contrast of hazards, for example ;;8 where

1
Aa(t) = Iim/HoFP(t <T,<t+hT,>t)

> Complication:
Interpretational difficulties because of the built-in selection due to
the conditioning on different subgroups (To > t and Ty > t)).
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Estimands

(B) Hazard scale:
Contrast of hazards, for example ;;gg where

1
Aa(t) = lim/HoFP(t <T,<t+hT,>t)

> Complication:
Interpretational difficulties because of the built-in selection due to
the conditioning on different subgroups (To > t and Ty > t)).

(C) Other scales, e.g. speed from Accelerated Failure Time Models.
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Comments

> The choice between these estimands should be guided by their
clinical relevance.

> In most settings these are contrasts on risk scale.

> Note however that hazard models are useful to derive such contrasts.
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Comments

> The choice between these estimands should be guided by their

clinical relevance.

> In most settings these are contrasts on risk scale.

> Note however that hazard models are useful to derive such contrasts.

> Whichever one is chosen, definitions above have no consideration of
the impact of censoring.

- Do we want to quantify causal effects in the absence in censoring?

- It depends on the source of censoring: for some it does not always

make clinical sense to remove them,

Administrative reasons
Loss to follow-up
Treatment switching

Competing event
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Assumptions
For identification of causal effects for a time-to-event outcome:
> No interference, consistency and positivity of the exposure

> No unmeasured confounding (NUC), i.e. : sufficient covariate
information regarding treatment assignment confounding

> In the presence of censoring we also require: sufficient covariate
information regarding (possibly time-varying) ‘common causes’ of
censoring and event.
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The simulation learner

Inspiration: the Rotterdam study [Royston & Lambert, 2009; Sjolander, 2016]

>

About 3000 women who had undergone surgery for breast
cancer and, for some, hormonal therapy was offered in 1978 to
1993

Outcome of interest: overall mortality

Strong negative confounding of the association between
therapy and mortality

Informative loss to follow-up driven by age and year of surgery
Lack of positivity for younger women and earlier patients
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The simulation learner

Inspiration: the Rotterdam study [Royston & Lambert, 2009; Sjolander, 2016]

>

About 3000 women who had undergone surgery for breast
cancer and, for some, hormonal therapy was offered in 1978 to
1993

Outcome of interest: overall mortality

Strong negative confounding of the association between
therapy and mortality

Informative loss to follow-up driven by age and year of surgery
Lack of positivity for younger women and earlier patients

Kaplan-Meier survival estimates
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The simulation learner

> Excluded women younger than 40 and with surgery before 1982

> Retained all the original confounders data

X A Y Crt1 Yit1

For a subset of the follow-up:
X: baseline confounders; Z: baseline predictors of censoring and death; A: treatment; Cy: censoring indicator at

time ty; Yj: outcome at time t;.
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The simulation learner
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LThe simulation Learner

Estimation of ACE(t)

1. Model-based marginal counterfactual survival curves:

- (Sufficiently) flexible hazard models

- Derive individual-level predicted potential survival curves

- Standardisation to the distribution of the observed confounders
- Compute difference at selected values of t
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LThe simulation Learner

Estimation of ACE(t)

2. Weighted Kaplan-Meier curves:

- Fit propensity score model for A and save predicted scores

- Fit pooled logistic regression model for C and save predicted
(time-varying) probabilities

- Combine the weights

- Estimate K-M curves using the inverse of these combined
values as weights
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Results

Model-based marginal counterfactual survival curves
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Results
All methods together
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Summary

> Counterfactual-based causal inference has shifted the focus from
model-based parameters to estimands defined irrespectively of any
model: we should choose meaningful, clinically relevant quantities
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Summary

> Counterfactual-based causal inference has shifted the focus from
model-based parameters to estimands defined irrespectively of any
model: we should choose meaningful, clinically relevant quantities

> This should free us from necessarily wanting to express causal
effects on the hazard scale:

- challenges to be interpreted causally
- useful for deriving the causal estimates of interest.

> Dealing with censoring calls upon a careful choice of potential
outcomes.
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