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Statistical models are important tools in empirical medical research. They facilitate individualized
outcome prognostication conditional on covariates as well as adjustments of estimated effects of
covariates on the outcome. Theory of statistical models is well-established if the set of covariates to
consider is fixed and small, such that we can assume that effect estimates are unbiased and the usual
methods for confidence interval estimation are valid. In routine work, however, it is not known a
priori which covariates should be included in a model, and often we are confronted with the number
of candidate variables in the range 10-25. This number is often too large to be considered in a
statistical model.

In recent decades many statisticians have extensively studied variable selection procedures for
various purposes, e.g., for adjusting the effect of a risk factor of interest for confounders or other
covariates, for hypothesis testing, or for deriving multivariable prediction models. It has turned out
that no selection procedure is generally superior to other procedures and there is no generally
accepted state of the art for variable selection [1]. Unfortunately, in medical papers it is still not
uncommon to use univariable selection as a screening approach to eliminate non-significant
variables and use the remaining variables to build the multivariable model. This approach has severe
weaknesses.   We will provide an overview of variable selection methods which are based on

a) significance or information criteria, [2; Ch. 2]
b) penalized likelihood, [3]
c) the change-in-estimate criterion, [4]
d) background knowledge, [5] or
e) combinations thereof. [6]
These methods were usually developed in the context of a linear regression model and then
transferred to more general models like generalized linear models or models for censored survival
data.

In this half-day workshop, we will exemplify applications of variable selection using scientific
questions and data from real medical studies with different research questions focusing on
descriptive models and transparent prediction models. Data of these studies are publicly available,
and their analysis will be discussed by means of worked exercises with accompanying R notebooks.
We will also interactively present a simulation study to investigate implications of variable selection,
e.g., on uncertainty and stability of the final model [7,8], on bias and variability of regression
coefficients [9], and on the validity of confidence intervals [10].

We will give pragmatic recommendations for the practitioner by suggesting typical steps to be done
when variable selection is considered. We give guidance on how to pre-select candidate covariates,
how to choose an appropriate variable selection method, and how to report the final model and its
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stability in scientific reports [11,12]. These recommendations are based on data settings with a mix
of 5-25 continuous and categorical covariates that are moderately correlated (r<0.8). We also discuss
some open issues that still need further investigation [1].

We will mix visual presentations with check-up questions to the audience and will demonstrate
worked exercises interactively in R-Studio. Participants can follow these analyses with their own
notebook, but it is not required to bring a notebook to attend and follow this course.
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II-4 Consequences of variable selection – a simulation study (Georg Heinze)
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• To explain aspects of variable selection in multivariable regression analyses of

observational studies.

• To review different variable selection strategies and modeling philosophies.

• To encourage investigations of model instability induced by variable selection.

• To illustrate the urgent need for background knowledge in statistical modeling.
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• Part I-1: Philosophy

• Part I-2: Prerequisites

• Part I-3: Variable selection methods and strategies

Break

• Part II-1: Consequences of variable selection

• Part II-2: Case studies

• Part II-3: Recommendations

CeMSIIS - Section for Clinical Biometrics                                                                  Part I-1
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PART I-1: PHILOSOPHY

Magritte, Ockham, Einstein



IBS‐ROeS Pre‐conference workshop 06.09.2021

Variable Selection, Part 2 3

What is this?

Georg Heinze, Christine Wallisch, Daniela Dunkler

5CeMSIIS - Section for Clinical Biometrics                                                                  Part I-1

What is this?

Georg Heinze, Christine Wallisch, Daniela Dunkler

6

„This is not a pipe“
René Magritte, 1928-29

CeMSIIS - Section for Clinical Biometrics                                                                  Part I-1



IBS‐ROeS Pre‐conference workshop 06.09.2021

Variable Selection, Part 2 4

Aim of this part

CeMSIIS - Section for Clinical Biometrics                                                                  Part I-1

Georg Heinze, Christine Wallisch, Daniela Dunkler

7

• To understand how models simplify and approximate reality.

What do we mean by a statistical model?
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• A set of probability distributions on the sample space S.
(e.g. Cox and Hinkley, 1974)

• Statistical models summarize patterns of the data available for analysis.
(Steyerberg, 2009)

• A powerful tool for developing and testing theories by way of causal explanation, 

prediction, and description.
(Shmueli, 2010)

• A simplification or approximation of reality.
(Burnham, Anderson, 2002)

• A model represents, often in considerably idealized form, the data-generating

process. (Wikipedia)



IBS‐ROeS Pre‐conference workshop 06.09.2021

Variable Selection, Part 2 5

What do we mean by a statistical model?

CeMSIIS - Section for Clinical Biometrics                                                                  Part I-1

Georg Heinze, Christine Wallisch, Daniela Dunkler

9

• Statistical models are simple mathematical rules derived from empirical data 

describing the association between an outcome and several explanatory variables.
(Dunkler et al, 2014)

• They should be valid: provide predictions with acceptable accuracy.

• They should be practically useful: allow conclusions such as ‘how large is the 

expected difference in outcome if one of the explanatory variables differs by one 

unit’.

• They should be robust.

What are typical components of a statistical
model?
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https://cvdrisk.shinyapps.io/english

Prediction of 5-year
general cardiovascular risk

for individuals without 
any prior cardiovascular disease 
between 30 to 74 years.
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What can we learn from this model?

• Prediction

Risk Score = 4.8%.

Means 5 of 100 people with this level of risk will have a cardiovascular event in 

the next 5 years.

• Explanation

A person with a controlled systolic blood pressure with 120 mmHg has 1.3-times 

the risk of a person with natural systolic blood pressure of 120 mmHg.
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• Disease causation is usually multifactorial.

• Co-prognostic variables can only

be identified in a 

multivariable context.

(from http://www.cdc.gov/pcd/issues/2010/jul/10_0005.htm)
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Purposes of multivariable models

• Prediction of an outcome of interest

• Identification of ‘important’ predictors

• Understanding the effects of predictors (‘explanatory’)

• Adjustment for predictors uncontrollable by experimental design

• Stratification by risk

13CeMSIIS - Section for Clinical Biometrics                                                                  Part I-1
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(Royston & Sauerbrei, 2008)

To Explain or to Predict?

• Shmueli (2010):

• Prediction models

• Descriptive models

• Explanatory models

17CeMSIIS - Section for Clinical Biometrics                                                                  Part I-1
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To Explain or to Predict?
• Prediction models

• Interest in accurate predictions for future application.

• No concern about causality and confounding (association).

• Diagnostic and prognostic prediction models.

• Aims of prediction:

• Transparent: formula-based predictions can be explained as/decomposed in 

contributions of X‘s

• Simple: model is more easily applicable with few variables

• Misspecification may lead to locally biased predictions

18CeMSIIS - Section for Clinical Biometrics                                                                  Part I-1
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To Explain or to Predict?
• Descriptive models

• Capture the data structure parsimoniously: 

which variables are associated with the outcome and how?

• Often useful transparent prediction models, 

in special cases even causal conclusions possible

• Aims of description:

• Just X and Y: understand how Y is associated with X‘s

• Simple: make general, widely valid statements about these associations

• Misspecification ‚by intention‘

19CeMSIIS - Section for Clinical Biometrics                                                                  Part I-1
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To Explain or to Predict?
• Explanatory models

• Interest in causal contrasts (e.g., coefficients)

• Often achieved by counterfactual prediction

• Confounder selection

• Aims of explanation (causal inference):

• Interest in effect of an intervention on an outcome

• Main concern: correct adjustment for confounders

• Misspecification leads to biased effect estimate

• Simplicity not ultimately needed; may reduce variance
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1. The model is predefined. Estimate parameters and check assumptions. 

(Randomized trial.)

2. Develop a good predictor. Number of variables should be small.

3. Develop a good predictor. No limits in model complexity.

4. Assess the effect of a new factor of interest, adjusting for established factors.

5. Assess the effect of a new factor of interest, adjusting for confounding factors

selected by data analysis.

6. Hypothesis generation of possible associations of factors with outcome in 

studies with many covariates.

D
ata-d

riven
!

(Royston & Sauerbrei, 2008)
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A ‘true model’ = a ‘true data generating mechanism’.

Pro: 

• Aristotle: ‘Nature operates in the shortest way possible.’

• Newton: ‘We are to admit no more causes of natural things than such as are both 

true and sufficient to explain their appearances.’

Is there a true model?
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A ‘true model’ = a ‘true data generating mechanism’.

Contra:

• ‘We do not accept the notion that there is a simple “true model” in the biological 

sciences.’ (Burnham & Anderson, 2002)

• ‘We recognize that true models do not exist… A model will only reflect underlying 

patterns, and hence should not be confused with reality.’ (Steyerberg, 2009)

• ‘I started reading Annals of Statistics, and was bemused: Every article started with

„Assume that the data are generated by the following model: …“ followed by 

mathematics exploring inference, hypothesis testing and asymptotics.‘ 

(Breiman, 2001)

• ‘All models are wrong, but some are useful.’ (Box)
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• Statistics starts with data. These data are ‘generated’ inside a black box by nature.

• Statistical culture I:

• Statistical culture II:

(Breimann, 2001)

Assume a stochastic data model for the inside of the box. 

The inside of the box is complex and unknown. Find a function 𝑓ሺ𝑋ሻ
– an algorithm – that operates on 𝑋 to predict the responses 𝑌.

Example I: Prediction of recurrence of venous
thromboembolism
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Covariates

The ‚Vienna prediction model‘
(Eichinger et al, 2010)
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Example II: Urine-proteomic predictor of incidence of early
chronic kidney disease

Support Vector Machine

CKD273 predictor
(Good et al, 2010)

William of Ockham
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• 14th century logician and Franciscan friar:

‘Pluralitas non est ponenda sine neccesitate.’

(Entities should not be multiplied unnecessarily.)

• When you have 2 competing theories that make exactly the same predictions, 

the simpler one is the better.

• If you have 2 equally likely solutions to a problem, choose the simplest.

• The explanation requiring the fewest assumptions is most likely to be correct.

• ‘Simplicity is the ultimate sophistication.’ (Leonardo da Vinci)

• ‘Everything should be made as simple as possible, but not simpler.’ (~Einstein)
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• Models are not reality. 

• There is no such thing as a ‘true model’.

=> There is not a single model that will ultimately explain data generation.

• Models can be useful: for pure prediction or 

for understanding multidimensional association.

• If two models have the same explanatory power, we should prefer the simpler one.

• Complex models can be more accurate than simple ones, but are often less useful 

(for description or prediction).

Focus of this presentation
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• Methods and consequences of variable selection
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Aim

• To explain statistical/mathematical prerequisites that are useful in variable 

selection.

• Focusing on a descriptive or transparent prediction research aim, 

seasoned with a knife tip of causal inference.
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Model estimation: 
maximum likelihood

Types of models by distribution of error

Likelihood and information‐theoretic measures

Bias‐variance
tradeoff Change‐in‐estimate criterion

Statistical prerequisites
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Preselection of variables
• Background knowledge/domain expertise!

• Chronology

• Costs of collecting measurements

• Availability at time of model use

• Quality (measurement errors)

• Confounder criteria

• Availability in data set (missing values)

• Variability (rare categories)

• Preselection = assuming no other variables important!

Discussion with domain
expert!
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Linear model

• 𝑌 ൌ 𝛽  𝛽ଵ𝑋ଵ  ⋯  𝛽𝑋  𝜖 ൌ 𝑋𝛽  𝜖

• 𝜖~𝑁ሺ0, 𝜎ሻ

Logistic model

• Pr 𝑌 ൌ 1         ൌ expitሺ𝛽  𝛽ଵ𝑋ଵ  ⋯  𝛽𝑋)a

• . ൌ exp 𝑋𝛽 /ሾ1  exp 𝑋𝛽 ሿ

Cox model

• ℎ 𝑋, 𝑡 ൌ ℎ 𝑡 exp 𝛽ଵ𝑋ଵ  ⋯  𝛽𝑋 ൌ ℎ 𝑡 exp ሺ𝑋𝛽ሻ

What models do we typically see?
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Common assumptions

Linearity: linear combination of variables

• (Relaxation: splines, fractional polynomials, GAMs)

Additivity: sum of effects

• (Relaxation: include interactions, power functions, etc.)
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Interpretation of regression coefficients

• Adjusted effect of 𝑋:

• Expected difference in outcome, if 𝑋 differs by 1 unit and 

all other 𝑋ᇱ𝑠 constant.

• 𝛽 measures the ‘independent’ effect of 𝑋.

• Fundamentally different in different models!
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Interpretation of regression coefficients

• Consider the following models to explain %body fat:
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Provided information versus desired knowledge

• Information provided by the data:

• Number of independent observations 𝑁

• Number of events 𝐸

(logistic: min(#events, #non-events), Cox: #events)

• Amount of knowledge desired:

• Number of unknown regression coefficients (K)

• Summarized by ‘events per variable’ EPV ൌ 𝐸/𝐾, NPV ൌ 𝑁/𝐾.

• Often cited minimum EPV ൌ 10 is questionable.

CeMSIIS - Section for Clinical Biometrics                                                                       Part I-2

Georg Heinze, Christine Wallisch, Daniela Dunkler

10

Events Per Variable (EPV)

• EPV  10 (Harrell 2001, p. 61)  … or EPV  15 (Harrell 2015)

• Number of candidate variables, not variables in the final model.

• Should be considered as lower bound!

• See also van Smeden et al (2016): 

‚No rationale for 1 variable per 10 events…‘

• Non-linearity, interactions, etc.  EPV ↑ .

• Prediction EPV ↑ (logistic regression EPV 20െ50).

• Modern modeling techniques (random forests, neural networks, support vector

machines)  10 times EPV compared to logistic regression EPV ↑↑
(van der Ploeg et al. 2014).
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Testing coefficients of models

• Consider two hierarchically nested models (𝑀ଶ nested in 𝑀ଵ; in 𝑀ଶ some 𝛽 ൌ 0)

• Wald tests: use only 𝑀ଵ  step down

• Scores tests: use only 𝑀ଶ  step up

• Likelihood ratio test: compare 𝑀ଵ and 𝑀ଶ; considered the most precise test.

Abraham Wald, 
1902-1950

Ronald A. Fisher
in 1913

• What does it mean to test models? 

• OK if the test is ‘prespecified’ – rarely done in practice.

• Not informative if models result from earlier testing 

(iterated testing: tests on ‘generated’ hypotheses).

• Consequence:

• ‘Tests’ are interpretable if a few, pre-specified working models are compared.

• We cannot trust the p-values from selected models!

• Modeling and hypothesis testing – two hostile brothers?
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Testing between models
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• Akaike showed that for model selection we need to maximize the ‘cross-validated’ 

expectation of log 𝐿 across several competitive models:

• This can be approximated by

• He defined AIC ൌ െ2 log 𝐿 𝑥௧ 𝛽መ௧  2𝐾.

𝐸௧௦௧𝐸௧ሾlog 𝐿 𝑥௧௦௧ 𝛽መ௧ ሿ

log 𝐿 𝑥௧ 𝛽መ௧ െ 𝐾

Hirotumi Akaike, 1927-2009, 
(from http://andrewgelman.com)

Model developed on 𝑥௧,
Evaluated on 𝑥௧௦௧.

Model developed on 𝑥௧,
Evaluated on 𝑥௧.

𝐾 … number of parameters
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The value of AIC

• We can compare two non-hierarchical models.

• We can compare several models.

• Hierarchical models: corresponding p-values

• General: 1-pchisq(2*df, df)
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Schwarz‘s Bayesian Information Criterion (BIC)

• Defined as BIC ൌ െ2 log 𝐿  log ሺ𝑁ሻ𝐾

• If the ‚true‘ model is among the candidate models, then BIC will select the true model as

𝑁 → ∞ (consistent model selection)

• For Cox or logistic models, ‚ 𝑁‘ is the number of events, or min(events, non-events)

• More stringent selection for large N than for small N

• Compute equivalent significance level in R by 1-pchisq(log(N)*K, K)

• For K=1, N=100: equivalent to 𝛼 ൌ 0.032

• AIC selects more variables than BIC

Resampling to quantify model stability
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• Model selection frequency (MSF): how likely is selection of a model?
- the ‚final‘ model
- any other model

• Variable inclusion frequency (VIF): how likely is selection of a variable?

• Pairwise inclusion frequency (PIF): how likely is selection of a pair of variables?
(Sauerbrei & Schumacher, 1992)

• Relative bias conditional on selection: % bias in coefficient if variable is
(RCB) selected

• Root-mean-squared-difference ratio: inflation (>1) or deflation (<1) of MSE
(RMSDR) by selection (compared to full model)

• Stability paths
useful to assess dependence of inclusion on inclusion threshold
(Meinshausen & Bühlmann, 2010)
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• From Wallisch et al, StatMed 2021:
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Resampling methods

Bootstrap

• Draw 𝐵 samples with replacement from original data set.

• Perform model selection on each sample.

• Use for RMSDR, RCB (Wallisch, 2021)

Subsampling

• Draw 𝐵 samples of size 𝑀 ൏ 𝑁 without replacement.

• Perform model selection on each sample.

• 𝑀 ൌ 𝑁/2 yields distributions of regression coefficients similar to the bootstrap

• Use for VIF, MSF (Wallisch, 2021)
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Bias & efficiency

(Figure 1 from Greenland, 2000)
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Bias-variance tradeoff
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To explain or to predict?

Important in explanatory modeling

=MSE

Expected prediction error = Irreducible error + Bias2 + Variance

Important in prediction modeling
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Penalized likelihood: regularized regression

• LASSO: minimize ∑ 𝑦 െ 𝑦ො
ଶ  𝜆∑|𝛽|

• Imposes a penalty on the regression coefficients.

• Many variants/new methods (see Desboulets, Econometrics 2018 for a review)
• Prerequisite: adequate standardization of variables.

• What we obtain
– A prediction formula with less error than ordinary least squares,
– Shrinkage (to the mean),
– Variable selection.
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Penalized likelihood: regularized regression

• LASSO: minimize ∑ 𝑦 െ 𝑦ො
ଶ  𝜆∑|𝛽|

• Imposes a penalty on the regression coefficients.

• What we do not obtain
– Unbiased regression coefficients,
– Confidence intervals:

• Sampling distribution can be assessed with bootstrap, 
but because of the bias, does not give valid confidence intervals.

• Post-selection inference: still in its infancy (Kammer, arXiv 2021)
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Shrinkage

The phenomenon

• Observed values in new samples are closer to overall mean than predicted

values.

Training sample                                                  Test sample

Calibration slope = 1 Calibration slope < 1
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Shrinkage
The method(s)

• Anticipate shrinkage (of calibration slope) by cross-validation

• ‘Shrink’ regression coefficients such that a calibration slope of 1 would be expected.

Calibration slope < 1
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Shrinkage methods

• Post-estimation shrinkage factor estimation

– Verweij & Van Houwelingen 1993: global shrinkage factor 𝑐
(𝑐 ൏ 0.8  poor model)

– Sauerbrei, 1999: parameterwise shrinkage factors
– Dunkler, 2016: joint shrinkage factors, R package shrink

• Regularized regression

– Ridge regression: L2 penalty on regression coefficients
– Lasso: L1 penalty (Tibshirani, 1996 & 2011)
– Elastic net: L2 and L1 penalty

• Better prespecify than cross-validate penalty strength?

 Greenland, StatMed 1997 (Empirical Bayes vs. Semi-Bayes)
– Van Calster et al, SMMR 2020
– Riley et al, JCE 2021
– Sinkovec et al, upcoming in BMC MedResMeth 2021 (‚To tune or not to tune‘)
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Shrinkage
• Consequences of shrinkage:

– Controlling variance, not bias.

– Inference about effects after shrinkage?

• Selection = extreme shrinkage!

“If it’s close to 0, set it to 0.”

• Not to be confused with bias correction!

– It does not aim at unbiased regression coefficients!

– It may decrease the overall MSE, but can lead to higher local MSE (see later)
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Addressing confounding in descriptive models (?)

• Explanatory models: we have to consider confounding (‚we must‘)

• Descriptive models: we choose our confounders to adjust our estimates (‚we want‘)

Directed acyclic graph (DAG)

• = A graph with one-way edges containing 
no cycles describing causal relationships.

Confounding

• Effect of 𝑋ଵ on 𝑌 is confounded by 𝑋ଶ, if 𝑋ଶ is effect of both 𝑋ଵ and 𝑌.

•  𝑋ଶ must be considered to regain causal interpretation of effect of 𝑋ଵ on 𝑌.
(Pearl, 1995)

b

c

a
X2

X1
Y
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• In epidemiologic studies, it is often not clear whether adjustment for a variable 𝑋ଶ is 

necessary or not.

• In descriptive model, we can decide  impacts interpretation

Change-in-estimate criterion

• If 𝑋ଶ (abdomen circumference) is a confounder (𝑎 and 𝑏 exist),

then its removal will change our assessment of arrow 𝑐 from 

weight to body fat.

• So we could remove ‘abdomen’ and see what happens 

to 𝑐: CIE ൌ cᇱ െ c.
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Change-in-estimate criterion

b

c

a

Abdomen

Weight

c‘
Weight Body fat

Body fat
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Change-in-estimate criterion

• M1: 𝛽  𝛽ଵ𝑋ଵ  𝛽ଶ𝑋ଶ

• M2: 𝜃  𝜃ଵ𝑋ଵ

• Change in estimate criterion: leave 𝑋ଶ in the model if 𝛽ଵ െ 𝜃ଵ ് 0,
often proxied by

absሺ𝜃መଵ െ 𝛽መଵሻ/𝛽መଵ  0.10

• This leads to inconsistent variable selection
(Maldonado & Greenland, 1993)

• To get a consistent estimator, we could test for  𝛽ଵ ് 𝜃ଵ

(collapsibility of the two models).

(see also Lee, 2014)
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Significance of change-in-estimate

• Tests for collapsibility by bootstrapping or approximation

• Dunkler et al (2014) approximate the change-in-estimate 
and derive a simple test for 𝛽ଵ െ 𝜃ଵ ൌ 0.

We showed:

• Elimination of a ‚significant‘ variable 𝑋ଶ from a model leads to a significant change 
𝛽መଵ െ 𝜃መଵ.

• Elimination of a ‘non-significant’ variable 𝑋ଶ from a model leads to a non-significant 
change 𝛽መଵ െ 𝜃መଵ.

•  Test of collapsibility = Test of omitted variable.

• Compare to Greenland, Daniel & Pearce (IJE 2016): ‘change in MSE’
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Motivation for omission: to reduce MSE?

• Omission of 𝑋ଶ successful (in terms of MSE of 𝛽ଵ) if:

Bias୭୫୧୲
ଶ ൏  Variance୳୪୪ െ Variance୭୫୧୲

Success of ‚always omit‘ depends on sample size

Luijken et al, submitted:
A comparison of full model specification and backward elimination of potential 
confounders when estimating marginal and conditional causal effects on binary 
outcomes from observational data

Independent of N Inversely proportional to N
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Motivation for selection (adaptive omission): 
omit weak effect to reduce MSE

• Simulation with 𝑁 ൌ 50

 ‘Selection is good.’

True 𝛽ଵ ൌ 1.5, 𝛽ଶ ൌ 𝟎.3

A weak 𝛽ଶ:
Setting it to 0 will more often push 𝛽መଵ
towards its true value than away from it.
Shrinkage effect on 𝛽መଵ!

RMSE(𝛽መଵ,ிሻ = 0.67
RMSE(𝛽መଵ,ாሻ = 0.65

Bias(𝛽መଵ,ிሻ ൌ െ0.03
Biasሺ𝛽መଵ,ாሻ = +0.03
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Motivation for selection (adaptive omission):
poor results if applied on strong predictor

 ‘Selection is bad.’

True 𝛽ଵ ൌ 1.5, 𝛽ଶ ൌ 𝟏. 𝟓

A strong 𝛽ଶ:
Setting it to 0 will always push 𝛽መଵ away
from its true value.

RMSE(𝛽መଵ,ிሻ = 0.68
RMSE(𝛽መଵ,ாሻ = 0.67

Bias(𝛽መଵ,ிሻ ൌ െ0.03
Biasሺ𝛽መଵ,ாሻ = +0.33

• Simulation with 𝑁 ൌ 50
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Prior knowledge

We should have known the likely role of 𝑋ଶ in advance:

• If it is considered strongly associated with Y, 

never consider deletion from the model!

• If it is considered weakly associated with Y, selection can improve performance. 

smaller variance (Shmueli, 2010)

• If it is considered not associated with Y, 

it better should not have been used upfront (‘instrumental variable’).

X2 X1 Y
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Dangers of using prior ‚knowledge‘

• Beware of prior knowledge from poorly conducted preceding studies:

• These studies may have used inappropriate selection methods

• cf. Hafermann et al: Statistical Model 

Building: Background ‚Knowledge‘ 

based on inappropriate preselection

causes misspecification

(upcoming in BMC Med Res Meth 2021)
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methods
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Aims
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• Distinguish expertise-based preselection from data-driven selection

• Understand motivation for data-driven selection as connected to the aim of

modeling

• Different recommendations in the literature may be explained by differences in 

the set of assumptions on sample size, number of candidate variables, modeling

aim, level of expertise, … .
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• ‘Full’ model specification

• Univariable filtering

• Best subset selection

• Forward selection

• Backward elimination

• Full model approximation

• Change-in-estimate: Purposeful variable selection and augmented backward 

selection

• Information-theoretic approach

• Directed acyclic graph (DAG)-based selection

Part I-3

Our basic approach: 
from the ‘Full’ to a meaningful ‘Global’ model

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• ‘Full model’ means: do not perform any data-driven variable selection, 

take what you have.

• ‘Global model’ means the largest meaningful model.

• Be sure about purpose of analysis.

• Use domain expertise to remove some variables upfront. 

• Select, for each variable, a desired level of non-linearity (including spline 

transformations).

• Select some biologically plausible interactions.
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Univariable filtering

CeMSIIS - Section for Clinical Biometrics
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• Still by far the most often applied variable selection method in medical literature!

• Select a significance level 𝛼 (e.g., 𝛼=0.20 or 𝛼=0.157)

• Perform 𝐾 univariable models.

• Use all variables in multivariable model with univariable 𝑝-value < 𝛼.

• Sometimes accompanied by subsequent backward elimination.

• Popular: ~25% of COVID-19 prediction models employed univariable filtering

(Wynants, BMJ 2020)

Part I-3

b

c

a

X1

X2
Y

Pros and cons of univariate selection

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Easy. (You can do that with any software.)

• Retraceable.

• Problematic (Sun et al 1996):

• Selection is on the total effect of 𝑋ଵ on 𝑌 (𝑎  𝑏𝑐)

• In multivariable context, only direct effect (𝑎) is of interest.

• Based on most likely misspecified models: total effect is estimated while ignoring

adjustment for any other variables.

a b c Consequence

Pos. Pos. Neg. 𝑋ଵ falsely not selected (if 𝑎 ൌ െ𝑏𝑐)

0 Pos./Neg. Pos./Neg. 𝑋ଵ falsely selected.

Pos./neg 0 Pos./neg 𝑋ଵ correctly selected (only if 𝑏 ൌ 0 or 𝑐 ൌ 0).
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Best subset selection

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Perform all 2 regressions.

• Select the model that has the lowest AIC.

Modification:

• Pre-specify a small number (4 െ 20) of plausible models.

• Select those that have AIC < AICmin+2.

• Perform multi-model inference on the selected models.

In practice:

• Approximated by stepwise approaches!

(Burnham & Anderson, 2002)

Part I-3

Forward selection

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Select a significance level 𝛼ଵ .

• Repeat: 

• While the most significant currently excluded term has 𝑝 ൏ 𝛼ଵ, add it and re-

estimate.

Variant: Stepwise forward

• If least significant included term has 𝑝  𝛼ଶ, remove it and re-estimate.

• Problem:

• Starts with grossly misspecified models

Software: 
SAS/PROC GLMSELECT
R step()
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Backward elimination

CeMSIIS - Section for Clinical Biometrics
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• Select a significance level 𝛼ଶ.

• Estimate full model.

• Repeat:

– While least significant term has 𝑝  𝛼ଶ, remove it and re-estimate.

Variant: Stepwise backward

– If most significant excluded term has 𝑝 ൏ 𝛼ଵ, 

add it and re-estimate.

• Should start with plausible ‚global‘ model

Software: 
R mfp:mfp()

Part I-3

Full model approximation

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Select a level of approximation 𝑅ௗ
ଶ from ሾ0, 1ሿ (typically 𝑅ௗ

ଶ =0.95).

• Fit full model.

• Compute linear predictors 𝜂 from full model.

• Fit model with 𝜂 as dependent variable (𝑅ଶ ൌ 1ሻ

• Repeat:

• Remove variables sequentially as long 𝑅ଶ  𝑅ௗ
ଶ

• Suggested in Harrell (2015)

• Exemplified in Cowling et al (JCE 2020).
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Purposeful selection

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Proposed by Hosmer and Lemeshow in their books on applied logistic regression 

and applied survival analysis.

• Starts with univariate screening.

• Then performs backward elimination, but leaves variables in the model if 

omission would cause a large (proportional) 

change-in-estimate in other variables.

• Additional forward steps.

• A bit outdated.

(Hosmer & Lemeshow, 2011 & 2013)

Part I-3

Augmented backward elimination

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Proposed by Dunkler et al, 2014.

• Re-investigated the change-in-estimate criterion and proposed a standardized version

and a short-cut approximation to it.

• Based on backward elimination with level 𝛼ଶ.

• Leaves variable in a model if maximum of standardized changes-in-estimate greater

than 𝜏.

• Simulation study showed that results and performance are always close to the full

model, but fewer variables are selected.

Software: SAS macro %ABE, R package abe
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Opinions on variable selection

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• for models with focus on prediction and description.

Variable selectionNo! Yes!

(Harrell, 2001; Steyerberg, 2009; Burnham & Anderson, 2002, Royston & Sauerbrei, 2008)

Part I-3

Harrell‘s recommendations

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Focus on prediction models.

• ‘Effects cannot be assumed to be exactly 0.’

• ‘Selection invalidates confidence intervals and p-values.’

• Specify a full model, including meaningful interactions and 

non-linear effects.

• Perform global tests for interactions or non-linear effects.

• At most: do a mild backward selection at 𝛼ଶ ൌ 0.50.

• Model simplification using cross-validated predicted values as outcome.

(see also Harrell, 1996)
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Steyerberg‘s recommendations

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Focus on prediction models.

• False inclusion is better than false exclusion of variables.

• Stepwise methods may lead to

• Instability of selection,

• Biased estimation of coefficients,

• Misspecification of variability (exaggerated 𝑝-values),

• Predictions of worse quality than from a full model.

Part I-3

• Strong focus on descriptive (‚explanatory*‘) models.

• Select a set of models that are biologically plausible.

• These are subset models of a global model.

• Apply information-theoretic approach.

• Compute AIC weights or bootstrap weights.

• Perform multi-model inference

(problem: no variable selection!).

Burnham-Anderson‘s recommendations

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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Mode
l

𝚫𝒊 𝓛ሺ𝑴𝒊|𝒙ሻ 𝑤

1 0 1 0.431

2 1.2 0.5488 0.237

3 1.9 0.3867 0.167

4 3.5 0.1738 0.075

5 4.1 0.1287 0.056

6 5.8 0.0550 0.024

7 7.3 0.0260 0.010

90% confidence set

Δ ൌ 𝐴𝐼𝐶 െ 𝐴𝐼𝐶୫୧୬

Akaike weight: 𝑤 ൌ
ୣ୶୮ ሺି ଶ⁄ ሻ

∑ ୣ୶୮ ሺିೝ ଶ⁄ ሻೝ

* Burnham&Anderson‘s definition of ‚explanatory‘ differs from Shmueli‘s
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Model averaging
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within-model
variance

between-model
variance

weight

(Buckland, 1997)

• 𝛽መ̅ ൌ
∑ ఉೕೝ ூೝ,ೕ௪ೕ,ೝ

௪శሺሻ
𝐼, … inclusion of 𝛽 in model 𝑟

𝑤ାሺ𝑗ሻ … sum of weights of models including 𝛽

• 𝑣𝑎𝑟ෞ 𝛽መ̅ ൌ ∑ 𝑤 𝑣𝑎𝑟ෞ 𝛽መ, 𝑀  𝛽መ, െ 𝛽መ̅
ଶ



ଶ

Part I-3

Burnham-Anderson‘s recommendations

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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For descriptive (explanatory*) model

• If there is a dominating model with 𝑤  0.9, just report

this one unconditionally.

• Otherwise, report the best performing model, with unconditional variance based

on model-averaged inference on the models of the 90% confidence set.

For prediction model

• Perform model-averaged inference (averaged point estimate and variance).

Bootstrap model frequencies can replace the Akaike weights.

Relative importance of a variable 𝑋:     𝑤ା 𝑗 ൌ ∑ 𝑤𝐼,

* Burnham&Anderson‘s definition of ‚explanatory‘ differs from Shmueli
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Royston-Sauerbrei ‘s recommendations

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Focus on descriptive models.

• Initial working set of variables.

• Coding matters.

• Backward elimination with additional forward steps.

• Function selection. (not covered here)

• ‘If you have a large enough sample, you can use selection methods.’

• They propose backward elimination.

• Select 𝛼ଶ according to needs; larger value means larger model.

• Emphasize importance of investigation of model stability  by means of 

resampling.

Part I-3

Coding

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• One interesting aspect (out of many) in the Royston-Sauerbrei (2008) book is their
discussion of appropriate coding of categorical variables:

• Nominal variables: choose an appropriate reference.
– Frequent, standard group, etc.
– Variable selection on dummys – collapse rare groups with reference

• Ordinal variables: advantages of ordinal coding
– Variable selection can then collapse adjacent groups with similar outcome

Level Dummy
1

Dummy
2

0 0 0

1 1 0

2 0 1

etc.

Reference coding: Level Dummy
1

Dummy
2

0 0 0

1 1 0

2 1 1

etc.

Ordinal coding:
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• All are using maximum likelihood  prediction as vehicle to find estimates.

• While prediction focusses on 𝑌 and the minimization of prediction error, 
causal modeling focusses on causal contrasts such as 𝛽መ or, more generally,

𝐸 𝑌 𝑋 ൌ 1 െ 𝐸ሺ𝑌|𝑋 ൌ 0ሻ

• In prediction, important prerequisites for selecting variables are:
– Chronology (do not use future values!, 

e.g. time-dependent variables in survival analysis),
– Availability at time of prediction.

• In explanatory modeling, it is confounder control. In descriptive models, it is
+/- error minimization DAG methodology mostly simple interpretation.

Differences (and similarities) in prediction, explanatory
and descriptive modeling

Part I-3

‚Expertise‘-driven preselection

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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Modeling aim Expertise preselection of

independent variables

What data-driven selection may

add

Prediction Availability, chronology, costs, 

assumed associations with Y

Remove weak candidate

predictors to decrease MSE

Explanation Identify causal contrast of interest by

appropriate confounder control

Remove ‚instruments‘ to

decrease MSE

Description What are the variables I want to

consider?

Reduce model size (parsimony),

Remove weak predictors to

decrease MSE
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• Chronology:

• Don‘t use information from the future for 

prediction!                                                        (see e.g. Wynants, BMJ 2020)

(This is one of the most often violated conditions in practice!)

• 𝑋 must be available also in prediction situation.

Preselection for (prognostic) prediction models

time

Outcome observation
Harvesting covariates

Inclusion Index date

Part I-3

Using causal DAGs to identify confounders

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler

• Pearl (1995) described causal relationships by DAGs.

• We are interested in the effect of 𝐴 on 𝑌.

Confounder adjustment should be made for:

• Confounders (parents of 𝐴 and 𝑌: 𝐶ଵ)  (BIAS)

• Backdoor path blockers (they look like confounders: 𝐶ଷ) (BIAS)

• NOT for instruments (𝐶ଷ if 𝑈ଷ were not there)   (VARIANCE)

• NOT for colliders (𝐶ଶ)  (BIAS)

25
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Implication of the DAG view on explanatory models

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• This implies that there cannot be a single model ‚explaining 𝒀‘,

but the choice of model depends on what we want to estimate: 

e.g., the causal effect of 𝐴 on 𝑌.

• If we were interested in the effect of 𝐶ଵ on 𝑌, 

we would not adjust for 𝐴

(and probably not for any other variable).

Part I-3

Take home

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Distinguish expertise-based from data-driven variable selection
• Motivation for data-driven variable selection:

– Make model more easily interpretable (description)
– Make model more practically useful/communicable etc. (description, 

prediction)
– Reduce noise (MSE) (description, prediction, explanation)

• Different recommendations stem from different contexts/scenarios:
– Sample size
– Purpose of modeling
– Number of candidate variables
– Assumptions/level of domain expertise

• Next, we will investigate consequences of algorithmic omission/inclusion 
 are these theoretical considerations practically meaningful?
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Part II-1: Consequences of
variable selection

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler

(http://whatnextbook.com/wordpress/tag/decisions/)

Part II-3Part II-1

Questions

• How stable is variable selection? 

• Does variable selection induce bias of 𝛽?

• Does variable selection increase RMSE of 𝛽?

• Does variable selection lead to biased or inaccurate predictions?

• How does background knowledge improve results?

• What is the role of sample size? 

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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Simulation - Aim

• Assessment of the impact of performing variable selection on regression 

coefficients and predictions obtained by the reduced model.

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler

Part II-3Part II-1

Simulation – Data generating mechanism

• Scenario based on Sheppard, 2016 and Hafermann, 2021 
mimicking a typical observational study in cardiology

• Outcome: difference in diastolic blood pressure between a measurement in a 
clinical environment and a measurement at home

• Predictors: age in years, sex, first reading of the clinical diastolic blood pressure, 
difference of the first and a follow-up reading of the clinical diastolic blood
pressure, body mass index, hypertension, antihypertensive medication, pulse 
pressure, history of cardivascular diseases

• 11 noise variables

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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Simulation – Data generating mechanism
Univariate distributions of predictors

Part II-3Part II-1

Simulation – Data generating mechanism

Variable Unstandardized
coefficients 

Standardized 
coefficients

Partial R²

Xsex 3.33 1.63 0.229

Xcbp_first -0.47 -1.27 0.103

Xantihyp 2.37 1.00 0.091

Xage -0.08 -0.85 0.053

Xcbp_change 0.31 0.63 0.029

Xpp -0.06 -0.52 0.029

Xbmi -0.07 -0.29 0.006

Xcvd -0.40 -0.16 0.002

Residual standard
deviation

2.00

Total R² 0.59

Correlations of predictorsModel to generate outcome variable
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Simulation – Methods

• Univariable selection 

• with 𝛼 ൌ 0.05

• with 𝛼 ൌ 0.2

• Forward stepwise selection with AIC (default value in step function in R)

• Backward elimination 

• with 𝛼 ൌ 0.05

• with AIC 

• Augmented backward elimination with 𝛼 ൌ 0.2 and 𝜏 ൌ 0.05 (default values in abe
function in R)

• Full model approximation with 𝜔 ൌ 0.95

• Lasso with 10-fold CV lambda.min

• Relaxed Lasso with 10-fold CV lambda.min and subsequent ML estimates

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler

Part II-3Part II-1

Simulation – Estimands & performance measures

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler

Estimand Performance measure

𝜷𝒊

Bias 

RMSE*√𝑛

Coverage of the 95% CI 

Width of the 95% CI 

Type 1 error / Power 

False positive rate / True positive rate

Selection rate of the true/biased/unbiased model

y
Local bias

Local prediction error

NB: we use RMSE*√𝑛 to equalize the effect of sample size
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A note of caution

• We assume a ‘true model’ (data generating mechanism), 
even if we doubted its existence in Part I.

• We assume that a variable selection method may discover that ‘true model’.

• This way we can learn about the behavior of variable selection methods under known 
population properties.

• We can also evaluate ‘explanatory performance’ of the model (bias/RMSE of regression 
coefficients).

• Alternative way to compare methods: 
best cross-validated performance in complex data sets

• Only possible for prediction performance

• No general properties can be derived!

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler

Part II-3Part II-1

• In the following we will show some screenshots of our shiny app with which results

can be interactively browsed.

• During the workshop, we can extend these comparisons or show head-to-head

comparisons between methods to better demonstrate relative performance of

methods
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Part II-3Part II-1

Same plot, FS removed
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Same plot, Uni & FU_approx removed

Part II-3Part II-1
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Conditional on selection

Part II-3Part II-1
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Conditional on selection

Part II-3Part II-1

Local bias of predictions

Sample size:
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Local RMSE of predictions

Sample size:

Part II-3Part II-1

Summary I

• Careful interpretation of conditional and unconditional performance!

• E.g. conditional coverage – not meaningful for variables selected in 5%.

• Variable selection methods have been described with ‘bias away from zero’, 

but this concerns the conditional bias only.

• Unconditionally, there is bias towards 0.

• Univariate filtering results strongly depend on correlation structure!

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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Summary II

• For large samples ( 50 NPV), BE(0.05) dominates all other methods in predictive 

accuracy.

• It is close to BIC – discover the true model if it is in the scope of models 

evaluated.

• BE works if true positive rate (TPR) is high for ‘true effects’ and false positive rate 

(FPR) is low for ‘null effects’.

• Therefore, variable inclusion frequencies (VIFs) may provide a guide towards 

whether we can trust the best BW model:

• VIFs should be routinely computed and reported,

• report also performance of ‘second-line’ models,

• don‘t trust a single model if selection is not sure.

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler

Part II-3Part II-1

Summary III

• Forward selection inferior to backward elimination.

• Lasso performs well in the ‘center’, but shrinks towards the mean (pessimistic).

• Problem probably estimation of penalty factor

• Lasso – problem with interpretability. (Remedy: ‘relaxed Lasso’)

• Background knowledge improves conditional measures and predictive accuracy 

because selection and estimation are disentangled.

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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Summary IV

• Data-driven selection is a bad idea with small samples.

• Better to work with simple, defendable, fixed models.

• But: depends on modeling aim

• Easy with descriptive models (modeler can ‚choose‘ the variables)

• More difficult with prediction models

• Explanatory models: ‚adjustment set‘ to minimize bias

• but trade-off with MSE should be considered (near-instruments!)

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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from https://www.packback.co/case-studies/

Part II-2CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler

Part II-3

Consulting situations

2

• ‘We would like to approximate the proportion of body fat by simple 

anthropometric measures.’

• ‘We want a prediction model for recurrent venous thromboembolism. Many 

risk factors were previously described, but the model should be clinically 

applicable for making therapy decisions. Can you please develop a 

parsimonious model?’

• ‘We want a prediction model for survival after cervical cancer diagnosis. We 

know our predictors. There are only few events.’

Part II-2CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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Case study 1: Body fat approximation

CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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• Johnson‘s (1996) body fat data example

• Publicly available

• 252 men aged 21 to 81

• Response variable: % body fat (Siri formula), based on costly underwater density

measurement

• Predictors: age, height, weight, 10 circumference measures

• First goal: approximation of

% body fat

www.freedieting.com

R markdown

Part II-2

Part II-3

Case study 2: Cervical cancer prognosis

7

• The request: ‘We want a prediction model for survival after cervical cancer 

diagnosis. We know our predictors. There are only few events.’

• A retrospective cohort study:

• 692 consecutive patients diagnosed with cervical cancer from two centers (Vienna, 

Innsbruck)

• Median follow-up of 46 months

Part II-2CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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Case study 2: cervical cancer prognosis

8

• Risk factors:

• FIGO stage (I, II, III, IV) (3df)

• Tumour size (<2cm, >2cm)

• Age

• Histologic subtype (squamous cell carcinoma, adenocarcinoma, other) (2df)

• Proportion positive lymph nodes (2df)

• Parametrical involvement (yes/no)

• These variables were available for 518 patients.

• 77 deaths  EPV=6.7

Part II-2CeMSIIS - Section for Clinical Biometrics

Georg Heinze, Christine Wallisch, Daniela Dunkler
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Case study 2: cervical cancer prognosis
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• critical EPV (6.7)  no variable selection

• L2-penalization (ridge regression)

• Presented as nomogram and
web calculator.

• The nomogram shows the
relative importance of the
prognostic factors.
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Summary of case studies

11

• Variable selection should not always be considered (in particular, when EPV is very 

small).

• Stability investigations provide additional insights and should accompany variable 

selection.

• For explanatory models, use substance matter knowledge (or brains).

Part II-2CeMSIIS - Section for Clinical Biometrics
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Case study 1: Modeling body fat

Aim of the analysis

We aim to develop a multivariable diagnostic prediction model for the approximation of percentage of body fat
using simple anthropometric measurements and age. The primary objective is prediction and the secondary
objective is the description of the adjusted association of each predictor with the outccome.

Data dictionary and metadata

Introduction to the bodyfat data set

The original source of this data set is Roger W. Johnson (1996), ”Fitting Percentage of Body Fat to Simple
Body Measurements”, Journal of Statistics Education, http://jse.amstat.org/v4n1/datasets.johnson.html.
This data set contains the variables age, weight, height, ten body circumference measurements and estimates
of the percentage of body fat determined by underwater weighing for 252 men.

Source data set

252 observations and 17 variables, no NAs

Name Labels Units Measurement
scale Class NAs

case Case number integer 0
brozek Percent body fat using Brozek’s equation % continuous numeric 0
siri Percent body fat using Siri’s equation % continuous numeric 0
density Density determined from under water weighing gm/cm3 continuous numeric 0
age Age years continuous numeric 0
weight Weight lbs continuous numeric 0
height Height inches continuous numeric 0
neck Neck circumference cm continuous numeric 0
chest Chest circumference cm continuous numeric 0
abdomen Abdomen circumference cm continuous numeric 0
hip Hip circumference cm continuous numeric 0
thigh Thigh circumference cm continuous numeric 0
knee Knee circumference cm continuous numeric 0
ankle Ankle circumference cm continuous numeric 0
biceps Biceps (extended) circumference cm continuous numeric 0
forearm Forearm circumference cm continuous numeric 0
wrist Wrist circumference cm continuous numeric 0

Data cleaning and working data set

An apparent error in height of case 42 was corrected. The unplausible case 39 with weight > 300 kg was
excluded. Units of weight and height were converted to kg and cm.

Georg Heinze, Christine Wallisch, Daniela Dunkler 1
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Hence, the working data set contains 251 observations and 17 variables, and no NAs.

Name Labels Units Measurement
scale Class NAs

case Case number integer 0
brozek Percent body fat using Brozek’s equation % continuous numeric 0
siri Percent body fat using Siri’s equation % continuous numeric 0
density Density determined from under water weighing gm/cm3 continuous numeric 0
age Age years continuous numeric 0
weight Weight kg continuous numeric 0
height Height cm continuous numeric 0
neck Neck circumference cm continuous numeric 0
chest Chest circumference cm continuous numeric 0
abdomen Abdomen circumference cm continuous numeric 0
hip Hip circumference cm continuous numeric 0
thigh Thigh circumference cm continuous numeric 0
knee Knee circumference cm continuous numeric 0
ankle Ankle circumference cm continuous numeric 0
biceps Biceps (extended) circumference cm continuous numeric 0
forearm Forearm circumference cm continuous numeric 0
wrist Wrist circumference cm continuous numeric 0

Statistical analysis plan

Statistical methods for main research aim

Linear regression will be used to model percent of body fat approximated by Siri’s equation (outcome variable:
siri). The following independent variables were considered:

• Age (years)
• Height (in cm)
• Weight (in kg)
• Neck circumference (in cm)
• Chest circumference (in cm)
• Abdomen circumference (in cm)
• Hip circumference (in cm)
• Thigh circumference (in cm)
• Knee circumference (in cm)
• Ankle circumference (in cm)
• Biceps circumference (in cm)
• Forearm circumference (in cm)
• Wrist circumference (in cm)

Domain expertise:

We consider height and abdomen circumference as pivotal in the estimation of bodyfat. Hence these two
variables should not be subjected to variable selection but rather always be included in the models.

We will fit several models:

• We will start with a model containing all candidate predictors (the global basic model) collected in the
original data set,

• Variable selection, in particular, backward elimination with AIC as stopping criterion will be applied to
reduce the number of predictors in order to obtain a parsimonious model for application (BE selected
basic model),

Georg Heinze, Christine Wallisch, Daniela Dunkler 2



6 September 2021
XXXIInd Conference of the Austro-Swiss Region of the International Biometric Society

Short course: Variable selection

• As sensitivity analysis we will conduct augmented backward elimination (ABE) with default values of
the hyperparameters (ABE selected basic model).

• As alternative approach, we will fit a model based on the idea of dimensionality reduction (DR) as
outlined in Burnham & Anderson (2002) to address the expected multicollinearity of the anthropometric
measurements (global, BE and ABE selected DR model).

For selected models, stability will be evaluated by computing model selection frequencies and variable inclusion
frequencies using subsampling with a fraction of 0.5, and root mean squared difference ratio (RMSDR) and
relative conditional bias using the nonparametric bootstrap. Sampling variability of regression coefficients
will be assessed by the 2.5th and 97.5th percentiles of the bootstrapped coefficients, considering coefficients
of unselected predictors as 0.

In a data screening step preceeding modeling, we will investigate univariate distributions of all predictors and
the outcome variable, and the correlation between the predictor variables.

Georg Heinze, Christine Wallisch, Daniela Dunkler 3
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Data screening

Univariate distributions of predictors and the outcome variable

Table 1: Summary Statistics

Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 50 Pctl. 75 Max
siri 251 19.1 8.3 0 12.4 19.2 25.2 47.5
age 251 44.9 12.6 22 35.5 43 54 81
weight 251 80.9 12.3 53.8 72.1 80 89.4 119.3
height 251 178.6 6.6 162.6 173.4 177.8 183.5 197.5
neck 251 37.9 2.3 31.1 36.4 38 39.4 43.9
chest 251 100.7 8.1 79.3 94.3 99.6 105.3 128.3
abdomen 251 92.3 10.2 69.4 84.5 90.9 99.2 126.2
hip 251 99.7 6.5 85 95.5 99.3 103.3 125.6
thigh 251 59.3 5 47.2 56 59 62.3 74.4
knee 251 38.5 2.3 33 37 38.5 39.9 46
ankle 251 23.1 1.6 19.1 22 22.8 24 33.9
biceps 251 32.2 2.9 24.8 30.2 32 34.3 39.1
forearm 251 28.7 2 21 27.3 28.7 30 34.9
wrist 251 18.2 0.9 15.8 17.6 18.3 18.8 21.4

Georg Heinze, Christine Wallisch, Daniela Dunkler 4
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The distribution of most variables are approximately symmetric. Only some measurements of ankle and hip
are very high, but are still considered plausible.
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Bivariate Pearson correlation analysis
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Out of the 13 predictor variables, there are two pairs of variables exhibiting Pearson correlation coefficients
greater than 0.9 (hip with weight, abdomen with chest), and a group of ten variables with all pairwise
correlation coefficients greater than 0.5 (forearm, biceps, wrist, neck, knee, hip, weight, thigh, abdomen,
chest). These high correlations impose some challenges in model development and interpretation.

Interpretation of non-selected variables as ‘nonpredictive’ is highly problematic (both under the full model
and submodel views).
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Model building

Some statisticians recommended 15 observations per (design) variable as the minimum to obtain a statistical
model with adequate accuracy.

The number of observations per variable in our setting is 251/13=19.

Here, the number of variables actually corresponds to the number of design variables in the model. Thus,
if we included further terms to address non-linearities (e.g. by use of splines or fractional polynomials) or
interactions, the number of observations per variable would decrease correspondingly.

Global basic model

As first step, we estimate the global model including all predictors.

##
## Call:
## lm(formula = formula, data = bodyfat, x = T, y = T)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.0149 -3.1706 -0.1178 3.0133 9.8257
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.34244 23.32885 0.058 0.954160
## age 0.07380 0.03191 2.313 0.021595 *
## weight -0.04110 0.14758 -0.279 0.780863
## height -0.09800 0.07512 -1.305 0.193302
## neck -0.39426 0.23406 -1.684 0.093414 .
## chest -0.11906 0.10808 -1.102 0.271764
## abdomen 0.90082 0.09098 9.901 < 2e-16 ***
## hip -0.14603 0.14356 -1.017 0.310112
## thigh 0.17805 0.14629 1.217 0.224754
## knee -0.04099 0.24505 -0.167 0.867287
## ankle 0.18549 0.21951 0.845 0.398952
## biceps 0.17760 0.17008 1.044 0.297457
## forearm 0.27722 0.20659 1.342 0.180914
## wrist -1.83017 0.52940 -3.457 0.000647 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.249 on 237 degrees of freedom
## Multiple R-squared: 0.753, Adjusted R-squared: 0.7394
## F-statistic: 55.57 on 13 and 237 DF, p-value: < 2.2e-16

Model diagnostics

We call the standard residual diagnostics available for lm objects:

Georg Heinze, Christine Wallisch, Daniela Dunkler 7
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These plots can be used to assess internal validity of the model. The first plot does not give rise to concerns
on local biases, i.e., the expected values of the residuals are 0 over the full range of predictions. The second
plot confirms approximate normal distribution of residuals, which is a prerequisite for the interpretability
of confidence intervals and p-values, but actually not an assumption of the model. The scale-location plot
suggests that the residuals have a constant variance (absence of heteroscedastisicity).

The fourth plot suggests that some points may have disproportional impact on the regression results. However,
by checking the plausibility of the predictors’ distributions in the data screening step, we would not decide
to omit such observations. ‘Robust statistics’ were developed to downweight such inflential points in the
analysis in order to reduce their influence. As we will demonstrate later, we will choose another route for
robustifying our results.

Residuals plotted against predictor values inform about possibly violated linearity assumptions of effects:
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Some variables, e.g. hip, thigh and biceps, show some evidence for misspecification of the functional form of
association with the outcome. In this course, we will not deal with functional form selection. Our approach
to deal with the problem is to robustify the model by computing a robust sandwich variance. In this way, our
model is still easily interpretable as summary analysis informing about the average linear effect of each
variable adjusted for the others, with the misspecification adequately reflected by possibly enlarged robust
standard errors and confidence intervals.
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In fact, in this example the robust standard errors are partly even smaller than their model-based counterparts:

## Coef SE robust SE SE ratio
## (Intercept) 1.34 23.33 23.09 0.99
## age 0.07 0.03 0.03 0.87
## weight -0.04 0.15 0.14 0.98
## height -0.10 0.08 0.07 0.97
## neck -0.39 0.23 0.21 0.92
## chest -0.12 0.11 0.10 0.97
## abdomen 0.90 0.09 0.08 0.92
## hip -0.15 0.14 0.13 0.91
## thigh 0.18 0.15 0.13 0.88
## knee -0.04 0.25 0.22 0.90
## ankle 0.19 0.22 0.21 0.98
## biceps 0.18 0.17 0.16 0.91
## forearm 0.28 0.21 0.14 0.70
## wrist -1.83 0.53 0.47 0.89

Since the predictors are highly correlated, one could argue that not all predictors are needed for accurate
prediction of bodyfat percentage. This justifies to apply variable selection to reduce the set of predictors.

BE selected basic model

We did not subject height and abdomen to variable selection since we believe that they play a central role
for estimating the proportion of body fat. All other variables are considered competitively for estimation.
Backward elimination with AIC as stopping criterion was chosen as variable selection algorithm since AIC is
an appropriate criterion for fitting prediction models.

##
## Call:
## lm(formula = siri ~ age + height + neck + chest + abdomen + forearm +
## wrist, data = bodyfat, x = T, y = T)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.5596 -3.1079 -0.1909 3.1729 9.4388
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.45437 8.17898 0.667 0.505484
## age 0.06086 0.02480 2.454 0.014820 *
## height -0.12631 0.04749 -2.659 0.008348 **
## neck -0.33160 0.21892 -1.515 0.131144
## chest -0.13339 0.08762 -1.522 0.129230
## abdomen 0.87380 0.06483 13.478 < 2e-16 ***
## forearm 0.36215 0.19191 1.887 0.060335 .
## wrist -1.73444 0.48427 -3.582 0.000412 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.236 on 243 degrees of freedom
## Multiple R-squared: 0.7482, Adjusted R-squared: 0.741
## F-statistic: 103.2 on 7 and 243 DF, p-value: < 2.2e-16

The adjusted R2 in the global model increased only slightly from 0.739 to 0.741 in the selected model.
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Again, most robust standard errors are slightly lower:

## Coef SE robust SE SE ratio
## (Intercept) 5.45 8.18 8.21 1.00
## age 0.06 0.02 0.02 0.91
## height -0.13 0.05 0.05 1.05
## neck -0.33 0.22 0.20 0.91
## chest -0.13 0.09 0.09 0.97
## abdomen 0.87 0.06 0.06 0.96
## forearm 0.36 0.19 0.14 0.73
## wrist -1.73 0.48 0.44 0.92

Model diagnostics

Again, we perform model diagnostics by means of some plots of residuals.
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These plots lead to similar conclusions as for the global model.

In the following, we plot residuals with loess smoothers against the values of the predictor variables and
against the variables which were eliminated from the model.
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Selected variables
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Non-selected variables
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The residuals are hardly systematically related with any of the selected predictors. However, there is some
inversely U-shaped association with weight, hip, thigh and biceps. These variables may need consideration
with a quadratic or even more complex nonlinear functional form in order to improve the model, and were
probably eliminated because their functional form was misspecified. As already discussed, we do not treat this
in this course in more detail. We rather apply robust standard errors to account for model misspecification.
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Stability of the BE selected basic model

By default, the output of software performing variable selection does not inform about the instability of
models and the additional uncertainty that is incurred by selection. Hence, we calculate stability measures to
investigate this. We demonstrate how to compute and interpret variable inclusion frequencies (VIF), model
selection frequencies (MSF), pairwise inclusion frequencies, the relative conditional bias (RCB) and the root
mean squared difference ratio (RMSD ratio).

Estimands of VIF, MSF, RCB and RMSD ratio are explained in our paper ‘Selection of variables for
multivariable models: Opportunities and limitations in quantifying model stability by resampling’ (Wallisch
et al, Statistics in Medicine 2021). In short,

• The variable inclusion frequency quantifies how likely a variable is selected with a random sample of
given size from the population and applying a specific variable selection algorithm.

• The model selection frequency indicates how likely a specific combination of variables are selected.
• Pairwise inclusion frequencies quantify how likely pairs of variables are selected. They inform about

‘rope teams’ and ‘competitors’ among variables.
• The relative conditional bias expresses the bias that is introduced into regression coefficients by applying

variable selection relative to the (assumed unbiased) global model.
• Finally, the RMSD ratio quantifies inflation or deflation of standard errors caused by applying variable

selection.

The stability measures VIF, MSF and the pairwise inclusion frequencies are calculated based on 500 samples
of size N/2 (with N denoting the sample size) drawn without replacement (subsampling) whereas RCB
and RMSD ratio are calculated based on 500 bootstrap samples drawn with replacement according to the
recommendations of Wallisch et al. (2021). (We restrict to 500 resamples to speed up computations. In real
analyses, of course higher numbers of resamples can be used.)

Summary of the model stability

Below we report the coefficients from the global and the selected model, the bootstrapped sampling
distributions of coefficients, the corresponding VIFs, RCBs and RMSD ratios.

## Coef_global SE_rob_global Coef_sel SE_rob_sel VIF RCB RMSD ratio
## height -0.10 0.07 -0.13 0.05 1.00 1.18 1.05
## abdomen 0.90 0.08 0.87 0.06 1.00 -1.60 1.02
## wrist -1.83 0.47 -1.73 0.44 0.91 -1.84 1.05
## age 0.07 0.03 0.06 0.02 0.65 3.53 1.17
## neck -0.39 0.21 -0.33 0.20 0.37 29.84 1.23
## chest -0.12 0.10 -0.13 0.09 0.32 73.49 1.09
## forearm 0.28 0.14 0.36 0.14 0.29 44.72 1.15
## biceps 0.18 0.16 NA NA 0.27 97.48 1.12
## thigh 0.18 0.13 NA NA 0.25 50.43 1.07
## ankle 0.19 0.21 NA NA 0.21 84.65 1.16
## weight -0.04 0.14 NA NA 0.20 281.75 0.98
## hip -0.15 0.13 NA NA 0.19 78.72 1.04
## knee -0.04 0.22 NA NA 0.08 261.03 0.69

• VIFs: As predefined, height and abdomen have a selection frequency of 100% in the resampling models.
Also wrist was selected in 91% of the models. However, many predictors were selected less frequently
due to high collinearity. Surprisingly, weight seems rather unimportant with a VIF around 20%.
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• RCB: this measure is given in per cent. Very small biases are exhibited by the top selected variables,
up to age. For these variables we can safely ignore overestimation effects due to selection. Variables for
which selection is less sure show severe overestimation if selected.

• RMSD ratio: These measures suggest that only for weight and knee, the uncertainty in the estimation
reduces by applying data-driven variable selection. For all other variables, the uncertainties induced by
selection add up to the model uncertainty and this finally gives larger errors than if the global model
was prespecified. However, our study (Wallisch 2021) revealed that with high correlation between the
predictor variables, the RMSD ratios could be overestimated by 10-20%, such that the variance inflation
is probably ignorable even for neck and age. In fact, our study revealed that the variance inflation is
hard to estimate by resampling, and unbiased estimates can only be obtained with orthogonal predictors.

Here we illustrate the bootstrapped sampling distribution of the selected coefficients. Generally, the bootstrap
‘confidence’ intervals are wider than their robust counterparts, reflecting additional variability by considering
the selection step as stochastic rather than conditioning on the selected model. Some bootstrap point
estimates are exactly 0 as they are medians of the selected coefficients.
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Model selection frequency (MSF)

Here is the top-10 list of selected models during the resampling procedure:

##
## (Intercept)+age+height+abdomen+wrist
## 0.072
## (Intercept)+age+height+chest+abdomen+forearm+wrist
## 0.030
## (Intercept)+age+height+abdomen+ankle+wrist
## 0.028
## (Intercept)+age+height+chest+abdomen+biceps+wrist
## 0.028
## (Intercept)+age+height+neck+abdomen+forearm+wrist
## 0.028
## (Intercept)+age+height+chest+abdomen+ankle+biceps+wrist
## 0.024
## (Intercept)+height+abdomen+wrist
## 0.024
## (Intercept)+age+height+chest+abdomen+wrist
## 0.022
## (Intercept)+age+height+neck+abdomen+biceps+wrist
## 0.022
## (Intercept)+age+height+neck+abdomen+thigh+wrist
## 0.022

The MSFs are very low, and our selected model

[1] “(Intercept)+age+height+neck+chest+abdomen+forearm+wrist”

with a MSF of 0.008 can only be found at position 30 on the list.
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Pairwise inclusion frequencies (PIF)

Pairwise inclusion frequencies inform about “rope teams” and “competitors” among the predictors. The
following table shows pairwise PIFs and VIFs on the diagonal. For example, thigh and biceps were both
selected in only 3.2% of the resamples, while one would expect a frequency of 6.9% ( = 27.4% × 25.2%) given
independent selection. In this table, we used significance of a χ2 test at the 0.01 level as the formal criterion
for the flags in the lower triangle. Therefore, the pair (thigh, biceps) is flagged with “-” in the lower triangle
of the matrix below. Thigh and hip are flagged with “+” because they are simultaneously selected in 6.2%
of the resamples, while the expectation under independence is only 4.8%. Interestingly, age forms a “rope
team” with forearm, but is a competitor to thigh, ankle and weight. Variables with VIF of 100% were not
considered in this table.

## wrist age neck chest forearm biceps thigh ankle weight hip knee
## wrist 91.4 64.2 31 30.4 27.2 26.6 23.6 20 18.2 17.2 7.2
## age + 64.8 24 21.6 21.4 19.4 20.6 15.8 9 10.6 4.4
## neck + 37.2 7.6 14 11.2 11.4 4.4 3.4 10.6 2.8
## chest - 32.4 10.2 12.2 5 7.8 1.6 6.2 2.6
## forearm + + 28.8 4.2 9.8 4.4 6.8 6.6 2.2
## biceps + + + 27.4 3.2 6 6 6.2 3
## thigh - - + - 25.2 5.2 8.2 10.2 2.6
## ankle - - 20.6 5.6 3.6 1.6
## weight - - - - 20.2 2.6 2.6
## hip - + 19.2 1
## knee 7.8

Resampling distribution of predictors

All variables except for height and abdomen, which were forced into the model, have a spike at zero in the
resampling distribution of their coefficients. If age was selected, it clearly had a positive effect on bodyfat. For
some other variables, e.g., chest, weight, thigh, weight, hip and knee, both negative and positive coefficients
were observed in the resampled models. The selection of those coefficients, and also the sign their coefficients
obtained, strongly depended on the selected companion predictors.
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Sensitivity analysis: fitting the ABE selected basic model

As sensitivity check, we fitted a model with augmented backward elimination (ABE) and τ = 0.05, which
only excludes a variable if all other coefficients only change by less than 5% (ABE selected basic model).

Applying ABE to the set of predictors leads to a very large model. Only the variable knee was excluded
whereas backward elimination excluded several variables. This finding points to instability of the BE selected
basic model and probably a greater stability of the ABE selected basic model.

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.084268 22.915848 0.0473 0.9623017
## age 0.072416 0.025959 2.7896 0.0057040 **
## weight -0.044278 0.141261 -0.3134 0.7542148
## height -0.100232 0.072900 -1.3749 0.1704489
## neck -0.390332 0.211217 -1.8480 0.0658408 .
## chest -0.118194 0.104597 -1.1300 0.2596143
## abdomen 0.901160 0.083130 10.8403 < 2.2e-16 ***
## hip -0.147901 0.130752 -1.1312 0.2591255
## thigh 0.170982 0.127670 1.3393 0.1817668
## ankle 0.178756 0.211569 0.8449 0.3990124
## biceps 0.179022 0.155346 1.1524 0.2503105
## forearm 0.275360 0.141427 1.9470 0.0527093 .
## wrist -1.835837 0.473665 -3.8758 0.0001375 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Dimensionality reduction (DR) approach: model building with
combined variables

Because of the high correlation between the predictors, only small changes in the data may have tremendous
effects on the estimated coefficients. One way to deal with this problem is to derive summary variables and
use them for modeling the outcome.

Such an approach was pursued in the book of Burnham & Anderson (2002) for the estimation of bodyfat. For
this model, the following new variables were computed (see the book for further explanation on how these
summaries were justified):

• allometry = log(weight)/log(height)

• beergut = abdomen/chest

• heavyset = (knee ∗ wrist ∗ ankle)1/3/height

• fleshiness = (biceps ∗ thigh ∗ forearm/(knee ∗ wrist ∗ ankle))1/3

In addition, age was standardized.

The new variables should express the major dimensions of anthropometry. This is confirmed by much lower
correlation coefficients:
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Global DR model

As first step, we again estimate a “global model” including all predictors:

##
## Call:
## lm(formula = formula2, data = bodyfat, x = T, y = T)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.467 -3.374 0.025 3.248 11.967
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -181.9706 10.0971 -18.022 < 2e-16 ***
## allometry 109.5334 19.3485 5.661 4.19e-08 ***
## beergut 71.7376 8.1552 8.797 2.57e-16 ***
## heavyset 107.6988 65.6019 1.642 0.101934
## fleshiness 18.3580 5.2098 3.524 0.000508 ***
## age_stand 1.6371 0.3337 4.906 1.70e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.816 on 245 degrees of freedom
## Multiple R-squared: 0.6719, Adjusted R-squared: 0.6652
## F-statistic: 100.4 on 5 and 245 DF, p-value: < 2.2e-16
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Model diagnostics

We again investigate the residuals of the model to detect possible misspecification:
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Residuals plotted against predictor values suggest slight non-linear relations for beergut and heavyset since
the pattern are a bit U-shaped:
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Again, our approach to deal with this possible misspecification is to estimate robust standard errors, but to
stick with the linearity assumption for the sake of interpretability:

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -181.97060 9.90744 -18.3671 < 2.2e-16 ***
## allometry 109.53340 18.96208 5.7764 2.305e-08 ***
## beergut 71.73761 7.90310 9.0771 < 2.2e-16 ***
## heavyset 107.69881 65.62180 1.6412 0.1020380
## fleshiness 18.35804 4.82785 3.8025 0.0001809 ***
## age_stand 1.63708 0.33305 4.9154 1.623e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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BE selected DR model

Selection by backward elimination with AIC did not discard any variables because the highest p-value in the
global model (0.102) is smaller then our significance level of 0.157 corresponding to AIC:

##
## Call:
## lm(formula = formula2, data = bodyfat, x = T, y = T)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.467 -3.374 0.025 3.248 11.967
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -181.9706 10.0971 -18.022 < 2e-16 ***
## allometry 109.5334 19.3485 5.661 4.19e-08 ***
## beergut 71.7376 8.1552 8.797 2.57e-16 ***
## heavyset 107.6988 65.6019 1.642 0.101934
## fleshiness 18.3580 5.2098 3.524 0.000508 ***
## age_stand 1.6371 0.3337 4.906 1.70e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.816 on 245 degrees of freedom
## Multiple R-squared: 0.6719, Adjusted R-squared: 0.6652
## F-statistic: 100.4 on 5 and 245 DF, p-value: < 2.2e-16

The adjusted R2 in this alternative model (0.672) is lower than in the previous selected model considering all
circumference measurements separately (0.741).
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Stability of BE selected DR model

While the backward elimination did not actually remove any predictor from the model, in principle it could
have done so, so one should still explore the stability of that model.

Summary of the model stability

Below we report the coefficients in the global, in the BE selected DR model, the coefficients based on their
boostrap distributions, the corresponding VIFs, RCBs and RMSD ratios.

Most of the new variables seem to be highly relevant. In particular, fleshiness and standardized age were
selected in more than 90% of the models and allometry and beergut were always chosen. Interestingly,
heavyset only achieved a VIF of 37%.

## Coef_global SE_rob_global Coef_sel SE_rob_sel Median_b Lower_b
## allometry 109.53 19.35 109.53 18.96 115.17 73.20
## beergut 71.74 8.16 71.74 7.90 71.62 56.66
## age_stand 1.64 0.33 1.64 0.33 1.64 0.96
## fleshiness 18.36 5.21 18.36 4.83 18.17 7.88
## heavyset 107.70 65.60 107.70 65.62 103.38 0.00
## Upper_b VIF RCB RMSD ratio
## allometry 153.40 1.00 3.95 1.13
## beergut 86.80 1.00 0.02 0.97
## age_stand 2.31 1.00 0.23 1.05
## fleshiness 27.75 0.93 -0.57 1.04
## heavyset 227.32 0.37 37.72 1.27

MSF

Here we report the list of BE selected DR models during the resampling procedure:

##
## (Intercept)+allometry+beergut+fleshiness+age_stand
## 0.560
## (Intercept)+allometry+beergut+heavyset+fleshiness+age_stand
## 0.364
## (Intercept)+allometry+beergut+age_stand
## 0.068
## (Intercept)+allometry+beergut+heavyset+age_stand
## 0.006
## (Intercept)+allometry+beergut+heavyset+fleshiness
## 0.002

The MSF are much higher now since fewer variables were considered and multicollinearity is not that strong.
Our selected model ranks second with an MSF of 36.4%.

Resampling distribution of predictors

In the resampling distributions, the spikes at zero are less pronounced than in the BE selected model, and
the coefficients do no longer change their signs between the resampled models. Nevertheless, there are still
uncertainties when variable selection is ‘offered’ to the model building process.
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Sensitivity analysis: fitting the ABE selected DR model

As sensitivity check, we fitted a model with ABE and τ = 0.05.

Unsurprisingly, the ABE selected DR model is the same as the BE selected DR model:

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -181.97060 9.90744 -18.3671 < 2.2e-16 ***
## allometry 109.53340 18.96208 5.7764 2.305e-08 ***
## beergut 71.73761 7.90310 9.0771 < 2.2e-16 ***
## heavyset 107.69881 65.62180 1.6412 0.1020380
## fleshiness 18.35804 4.82785 3.8025 0.0001809 ***
## age_stand 1.63708 0.33305 4.9154 1.623e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Stability of ABE selected DR model

Summary of the model stability Below we report the coefficients from the global DR model, the ABE
selected DR model, the bootstrap medians, 2.5th and 97.5th percentiles, and VIFs, RCBs and RMSD ratios.

All variables seem to be highly relevant. Fleshiness, standardized age, allometry and beergut were always
chosen. When using ABE for selection variables, also heavyset is highly important for the estimation of
bodyfat achive a VIF of 96%.

## Coef_global_sel SE_rob_global_sel Median_b Lower_b Upper_b VIF
## allometry 109.53 18.96 110.25 72.85 144.81 1.00
## beergut 71.74 7.90 71.74 56.89 86.97 1.00
## fleshiness 18.36 4.83 18.41 8.45 27.75 1.00
## age_stand 1.64 0.33 1.62 0.96 2.29 1.00
## heavyset 107.70 65.62 103.61 -20.62 227.32 0.96
## RCB RMSD ratio
## allometry 0.57 0.99
## beergut 0.17 0.96
## fleshiness 0.15 0.97
## age_stand -1.21 1.01
## heavyset 0.80 0.98

VIF, RCB and RMSD ratio clearly confirm the stability of the model with the alternative predictors.

MSF Here we report the list of selected models ranked by their MSF:

##
## (Intercept)+allometry+beergut+heavyset+fleshiness+age_stand
## 0.96
## (Intercept)+allometry+beergut+fleshiness+age_stand
## 0.04

Only two models appeared in the resampling procedure, where the global model with all predictors included
dominates.
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Resampling distribution of predictors For completeness, we also report the resampling distributions of
the predictors. In only 4% of the models, heavyset was not selected, which leads to an only slightly elevated
bar around the origin in its histogram.
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Conclusions

In this case study, we explored the instabilities incurred by variable selection by some resampling procedures
and measures that were proposed in our paper (Heinze et al., 2018), further investigated in our follow-up
study (Wallisch et al., 2021) and implemented in the R package abe.

We can conclude that the more stringent a variable selection procedure is, the more uncertainties are incurred.
These uncertainties add up to the standard errors of regression coefficients, but are ignored in standard
output of statistical software.

In some problems there may be a ‘sweet spot’ where the efficiency gain by removing irrelevant predictors
outweighs the additional uncertainty incurred by offering selection to the estimation procedure. Clearly, such
a sweet spot will be more likely to exist if:

• the sample size is large,
• if the candidate predictors have low correlation,
• and if the candidate predictors either have a strong association with the outcome or no or just irrelevant

association with the outcome such that the variable selection algorithm can separate the true predictors
from the non-predictors with high probability.

Users may use the code in this case study to investigate how more stringent criteria for variable selection
affect uncertainties.

In the example, we also demonstrated how to increase stability of models by using derived variables that
summarize several similar variables. Here we used domain expertise to derive these variables. Alternatively,
one could apply explorative variable clustering techniques to detect such sets of variables that could be
combined. There are some suggestions in that direction in the book of Harrell (2015).
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Session info

## R version 3.6.3 (2020-02-29)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 14393)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=German_Austria.1252 LC_CTYPE=German_Austria.1252
## [3] LC_MONETARY=German_Austria.1252 LC_NUMERIC=C
## [5] LC_TIME=German_Austria.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] lmtest_0.9-38 zoo_1.8-8 sandwich_3.0-1 abe_3.0.1
## [5] corrplot_0.88 ggplot2_3.3.3 reshape2_1.4.4 vtable_1.3.1
## [9] kableExtra_1.3.4 knitr_1.31 mfp_1.5.2 survival_3.2-7
##
## loaded via a namespace (and not attached):
## [1] sjlabelled_1.1.8 tidyselect_1.1.0 xfun_0.23 purrr_0.3.4
## [5] splines_3.6.3 lattice_0.20-38 colorspace_2.0-0 vctrs_0.3.6
## [9] generics_0.1.0 htmltools_0.5.1.1 viridisLite_0.3.0 mgcv_1.8-31
## [13] yaml_2.2.1 utf8_1.1.4 rlang_0.4.10 pillar_1.6.0
## [17] glue_1.4.2 withr_2.4.1 DBI_1.1.1 lifecycle_1.0.0
## [21] plyr_1.8.6 stringr_1.4.0 munsell_0.5.0 gtable_0.3.0
## [25] rvest_1.0.0 codetools_0.2-16 evaluate_0.14 labeling_0.4.2
## [29] fansi_0.4.2 highr_0.8 Rcpp_1.0.6 scales_1.1.1
## [33] webshot_0.5.2 farver_2.0.3 systemfonts_1.0.1 digest_0.6.27
## [37] stringi_1.5.3 insight_0.14.0 dplyr_1.0.5 grid_3.6.3
## [41] tools_3.6.3 magrittr_2.0.1 tibble_3.0.6 crayon_1.4.1
## [45] pkgconfig_2.0.3 ellipsis_0.3.1 Matrix_1.2-18 xml2_1.3.2
## [49] assertthat_0.2.1 rmarkdown_2.7 svglite_2.0.0 httr_1.4.2
## [53] rstudioapi_0.13 R6_2.5.0 nlme_3.1-144 compiler_3.6.3
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For our typical context (descriptive models, 10-25 candidate variables), we compiled

some recommendations for the practicing statistician:

1. Generate initial set of variables

2. Decide on whether and which type of variable seletion is needed

3. Perform stability investations

4. Tackle post-selection inference

5. Reporting: recommendations for software developers
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• Start with defendable assumptions on the roles of variables

Use background knowledge to make assumptions on effect strength: 

strong or weak/unclear?

• Fit the global model
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2. Decide whether and which variable selection is needed
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• No selection applied to ‚strong‘ variables

• No selection if number of candidate variables is small

• Selection for ‚unclear‘ variables only with sufficient sample size

• If variable selection, do stability investigations

• See Table 3 (of Heinze et al 2018)
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• For descriptive and transparent prediction models, we prefer backward

elimination with 𝛼  0.157 starting with the global model

• 𝛼 should be adjusted for sample size and purpose

(larger 𝛼 in small samples, smaller 𝛼 in very large samples)

• If it should be guaranteed that important variables are not missed, 

augmented backward elimination can be recommended

• In small samples, perform penalized regression with a fixed penalty
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For definition and role of EPV in binary models, see
Van Smeden et al, BMC MedResMeth 2016
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• In theory MSE of a regression coefficient could be

lower if a companion covariate is omitted – if sample 

size is small

• But for practical causal inference, we could not find 

any relevant advantage of using backward elimination

(as compared to using a global model with pre-

selected confounders):

• Luijken K, Groenwold R, van Smeden M, Strohmaier S, 

Heinze G, submitted: ‚Causal inference when selection 

of confounders is partly based on backward 

elimination: likely biased, rarely more efficient’
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3. Perform stability investigations
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• Mandatory:

• Computation of variable inclusion frequencies

• Estimate sampling distribution of regression coefficients (bootstrap)

• Optional:

• Model selection frequencies

• Pairwise selection frequencies

• Impact of variable selection on bias and variance

We propose the bootstrap-based measures

‚Relative bias conditional on selection‘ (RBCS) and

‚Root mean squared difference ratio‘ (RMSDR) (see also Wallisch et al, 2021)

• Sensitivity analyses: change impact of decisions that were made
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Post-selection inference:

• Not much of a problem with large samples, say EPV>100   (BE -> BIC selection)

• Pragmatic solutions for smaller samples:

• At the very least, use robust standard errors (model mis-specification)!

CeMSIIS - Section for Clinical Biometrics
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• As long as packages as SPSS, SAS, or R‘s step() function output the ‚final model‘ 

without adjustment for the selection process, nothing will change!

• Software developers should include a set of stability measures in the output

• SAS‘s PROC GLMSELECT is a start, yet still not acceptable

• R package abe for extended output
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Last minute: two further ressources to consider
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Inspired by our review, both reanalyzed the bodyfat data set
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• Variable selection – loved by applied researchers, hated by statisticians

• Their widespread use is our own fault! 

• Asymptotically, some VS methods work quite well

• But: asymptotic properties – useless with real data?

• We critizise ‚wrong‘ CIs with VS, but other methods (ML) don‘t even supply them (?)

• Software makes applications

• SPSS, SAS, Stata, …

• Even R‘s step() just reports the last model, without comment

• Stability investigations not reported in standard software

(and standard applications)

• Exception: SAS/PROC GLMSELECT, R package abe

CeMSIIS - Section for Clinical Biometrics
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• We made some recommendations for quantities to be reported (by default in 

software!) if variable selection is applied (Implemented in Blagus‘ R package abe)

• We focus on models where regression coefficients should be interpretable

• Did not consider selection from a causal view (Witte & Didelez, BiomJ 2019)

• Did not cover nonlinearities and interactions

• Did not consider more fancy methods (SCAD, Alasso, Gradient boosting etc.)

• (ECONOMETRICS-Paper)

• Hard to believe that these methods would come without a cost?

• Stability investigations still needed
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Outstanding issues – research required!
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• From Sauerbrei et al, DAPR 2020:

1. Investigation and comparison of the properties of variable selection strategies

2. Comparison of spline procedures in univariable and multivariable contexts

3. How to model one or more variables with a ‚spike-at-zero‘?

4. Comparison of multivariable procedures for model and function selection

5. Role of shrinkage to correct for bias introduced by data-dependent modelling

6. Evaluation of new approaches for post-selection inference

7. Adaptation of procedures for very large sample sizes needed?
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Recipe for disaster

• Prepare a long list of poorly conceived predictors. 

• Add only small 𝑛.

• Mix together in an extensive iterative data dredging.

• Select the model with the smallest 𝑝-values.

• Present this final model without 

further considerations.
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Bon appétit!
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