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Abstract

Background: Clinical prediction models are useful in estimating a patient’s risk of having a certain disease or
experiencing an event in the future based on their current characteristics. Defining an appropriate risk threshold to
recommend intervention is a key challenge in bringing a risk prediction model to clinical application; such risk
thresholds are often defined in an ad hoc way. This is problematic because tacitly assumed costs of false positive
and false negative classifications may not be clinically sensible. For example, when choosing the risk threshold that
maximizes the proportion of patients correctly classified, false positives and false negatives are assumed equally
costly. Furthermore, small to moderate sample sizes may lead to unstable optimal thresholds, which requires a
particularly cautious interpretation of results.

Main text: We discuss how three common myths about risk thresholds often lead to inappropriate risk stratification
of patients. First, we point out the contexts of counseling and shared decision-making in which a continuous risk
estimate is more useful than risk stratification. Second, we argue that threshold selection should reflect the
consequences of the decisions made following risk stratification. Third, we emphasize that there is usually no
universally optimal threshold but rather that a plausible risk threshold depends on the clinical context.
Consequently, we recommend to present results for multiple risk thresholds when developing or validating a
prediction model.

Conclusion: Bearing in mind these three considerations can avoid inappropriate allocation (and non-allocation) of
interventions. Using discriminating and well-calibrated models will generate better clinical outcomes if context-
dependent thresholds are used.

Keywords: Clinical risk prediction model, Threshold, Decision support techniques, Risk, Data science, Diagnosis,
Prognosis

Background
Risk prediction models yield predictions for patients at
risk of having a certain disease or experiencing a certain
health event in the future. They are typically constructed
as regression models or machine learning algorithms
that have multiple predictors as inputs and a continuous
risk estimate between 0 and 1 as output [1, 2]. The cal-
culated risk for a specific individual supports healthcare

professionals and patients in making decisions about
therapeutic interventions, further diagnostic testing, or
monitoring strategies. The underlying goal in many ap-
plications is risk stratification, such that high-risk pa-
tients can receive optimal care while preventing
overtreatment in low-risk patients. This triggers the
question: how should the risk threshold to differentiate
between risk groups be determined?
The popular appeal of simplistic methods to analyze

data has affected the published scientific literature [3–5].
One well-known example is ‘dichotomania’, the practice
of imposing cut-offs on continuous variables (e.g., re-
placing the age in years by a categorical variable dividing
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patients into two groups, < 50 and ≥ 50 years old). Many
have illustrated that artificially categorizing data can be
detrimental for an analysis [1, 6, 7]. The recommended
approach is therefore to maintain continuous risk factors
continuous in the analysis. In the context of risk predic-
tion, the categorization of a predictor leads to a prema-
ture decision about meaningful and clinically useable
risk groups, and is thus a waste of information. If risk
groups are desired, these should be defined based on a
model’s predicted output instead of its inputs.
Regrettably, thresholds to divide patients into groups of

predicted risk are often defined in an ad hoc way, lacking
clinical or theoretical foundation. For example, thresholds
are often derived by optimizing a purely statistical criter-
ion (e.g., the Youden index or the number of correct clas-
sifications) for a specific dataset, without realizing that this
threshold may be inappropriate in clinical practice or that
a different threshold would be obtained if another dataset
from the same population were used (for some published
examples, see [8–12]). It is also not uncommon for re-
searchers to present the sensitivity of a risk model without
specifying the threshold that was applied. The inter-
national STRengthening Analytical Thinking for Observa-
tional Studies (STRATOS) initiative (http://stratos-
initiative.org) aims to provide accessible and accurate
guidance documents for relevant topics in the design and
analysis of observational studies. In what follows, we visit

three common myths about risk thresholds and attempt
to explain the strengths and weaknesses of alternative
ways to determine thresholds in a general and critical way.
The R code and data to replicate this analysis are available
as Additional file 1 and Additional file 2.

Myth 1: risk groups are more useful than continuous risk
predictions – no, continuous predictions allow for more
refined decision-making at an individual level
Any classification of the predicted risk implies a loss
of information because everyone within a class is
treated as if they have the same risk. Individuals whose
risks estimates are similar but are on either side of the
risk threshold are assigned different levels of risk, and
potentially different treatments. In contrast, a cali-
brated continuous risk on a scale from 0 to 1 allows
for more refined decision-making. A predicted risk of
cancer of 30% means that, among 100 women with
such a predicted risk, you would expect to find 30 ma-
lignancies. This extra information may, in practice,
lead to different patient management than when the
patient had been labeled as ‘low-risk’ (as 30% is below
the threshold).

A crude classification in broad risk categories is un-
desirable in many cases, especially when discrimination
is poor with a large overlap in predicted risks for cases
and non-cases (low area under the receiver operating
characteristic curve (AUC, Table 1), or when the clinical
context calls for shared decision-making. In these cases,
a calibrated continuous risk estimate is more informative
and allows patients to set their own thresholds. For ex-
ample, a personalized risk estimate of the probability of
pregnancy is of great value to inform and counsel sub-
fertile couples, despite moderate discrimination between
couples that do and do not conceive [13].

Table 1 Common terms

AUC Area under the curve, in this case the receiver operating characteristic curve. A measure of discrimination. For prediction
models based on logistic regression, this corresponds to the probability that a randomly selected diseased patient had a
higher risk prediction than a randomly selected patient who does not have the disease.

Calibration Correspondence between predicted and observed risks usually assessed in calibration plots or by calibration intercepts
and slopes.

Sensitivity The proportion of true positives in truly diseased patients.

Specificity The proportion of true negatives in truly non-diseased patients.

Positive predictive value The proportion of true positives in patients classified as positive.

Negative predictive value The proportion of true negatives in patients classified as negative.

Decision curve analysis A method to evaluate classifications for a range of possible thresholds, reflecting different costs of false positives and
benefits of true positives.

Net reclassification
improvement

Net reclassification improvement, reflecting reclassifications in the right direction when making decisions based on one
prediction model compared to another.

STRATOS STRengthening Analytical Thinking for Observational Studies

Table 2 Example of a risk model: the ADNEX model

ADNEX is a model to preoperatively characterize ovarian cancer by
calculating the risks of benign tumors and four classes of malignant
tumors. It was constructed using multinomial logistic regression and
validated with more recent data and in other centers [14]. Its predictors
are age, CA125 levels, the tumor diameter, the proportion of solid tissue
in the tumor, the number of locules, the number of papillary
projections, the presence of acoustic shadows, the presence of ascites,
and whether the patient was seen at a tertiary oncology center.
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In other cases, guidelines recommend interventions
based on risk thresholds. Here, communicating an in-
dividuals’ personal risk estimate and comparing it to
the proposed threshold may also improve counseling
and allow a discussion of diagnostic and therapeutic
options. In contrast, other situations require efficient
triage or immediate action (e.g., in emergency medi-
cine) and leave little room for deliberation. Here, risk
groups coupled to recommendations regarding treat-
ment or management facilitate decision-making.

Myth 2: your statistician can calculate the optimal
threshold directly from the data – no, a good threshold
reflects the clinical context
In using a risk model as a classification rule and a decision
aid, one intervenes (e.g., proceeds with the diagnostic
workup or treats) if an individual has a predicted risk
equal to or exceeding a certain risk threshold, ‘t’, and one
does not intervene if the risk falls below ‘t’. Consider the
ADNEX model that predicts an individual’s risk of having
ovarian cancer (Table 2). Patients with a predicted prob-
ability of cancer higher than the prevalence in the dataset
(0.41) may be classified as high-risk, whereas patients with
a lower predicted probability may be classified as low-risk
(Fig. 1) [15]. The holy grail of thresholds is to define risk
groups without misclassification – a low-risk group in
which cancer does not occur and a high-risk group that
surely benefits from further testing and/or treatment. In
reality, false negative (below the threshold, but diseased)
and false positive (above the threshold, but healthy) classi-
fications are unavoidable. The threshold that minimizes
misclassification is the threshold where the sum of the
number of false positive and false negative results is low-
est. As can be seen in Fig. 1, the bins on the left side of

that threshold are partly red and bins on the right side are
partly blue, even though the ADNEX model has excep-
tionally good discrimination compared to most other pub-
lished risk models.
An alternative is to choose a threshold based on

how each possible outcome is valued – a true positive,
false positive, true negative and false negative each
have their own value or ‘utility’. The costs of false
negative (CFN) and false positive (CFP) classifications
can be expressed in terms of mortality and morbidity,
or even in arbitrary units combining multiple costs
and patients’ personal values (Table 3) [26]. In the
ADNEX example, we will consider the percentage of
patients with severe morbidity and mortality (Table 4)
[27–29]. The cost of a false negative may be estimated
to be 95, reflecting the probability of severe morbidity
and mortality among false negatives, caused by the
delay in diagnosis and by treatment by general sur-
geons or gynecologists rather than referral to a
gynecological oncology unit. To a false positive, we at-
tribute a cost of 5, reflecting the complication risk
when a benign tumor is surgically removed for staging
(e.g., injury to hollow viscus, deep vein thrombosis,
pulmonary embolism, wound breakdown, bowel ob-
struction, myocardial infarction). True positives have a
cost (CTP) too, since some patients die or suffer severe
morbidity despite early detection. In addition, laparot-
omy and chemotherapy treatment may cause morbid-
ity. We estimate the percentage with severe morbidity
and mortality among true positives to be 15. The cost
of a true negative (CTN) is the cost of the ultrasound
investigation to compute the ADNEX risk, which is set
to 0 because ultrasound is considered a very safe im-
aging technique.

Fig. 1 Frequencies of predicted risks of malignancy and three possible risk thresholds
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The risk threshold can be chosen to minimize the ex-
pected total costs [24, 30]. For a calibrated risk model,
it can be determined as:

t ¼ CFP−CTN

CFP þ CFN−CTP−CTN
: ð1Þ

When the cost of a true negative is set to zero, this
equals to:

CFP

CFP þ BTP
; ð2Þ

Here, the benefit (BTP) of a true positive classification,
or intervening when needed, is the difference between
the cost of a false negative and the cost of a true posi-
tive. In our example, this is 95–15 = 80. If one accepts
the cost estimates given in Table 4, considering the
harm of a false positive cancer diagnosis (CFP = 5) as 16
times smaller than the benefit of a true positive cancer
diagnosis (BTP = 80), the threshold for the ADNEX
model would be 5/(5 + 80) = 0.06, or 6% (Fig. 1). Alterna-
tively, more complex, model-based analyses could be
conducted to find (sub)population- and intervention-
specific risk thresholds at which the benefits of interven-
ing outweigh the costs and harms, taking into account a
multitude of benefits and costs associated with interven-
ing, as well as stakeholders’ (e.g., patients) preferences
and values (for some examples, see [22, 31, 32]).
A purely data-driven rule to define the risk threshold

makes (often implicit) assumptions on the costs. For
example, minimizing the number of misclassifications
for the dataset at hand assumes equal costs for a false
positive and a false negative classification, and no costs
for correct classifications [24, 30]; this is rarely appro-
priate. Moreover, a data-driven risk threshold is subject
to sampling variability. With a different sample, a dif-
ferent threshold could be optimal. Thus, in a new sam-
ple, diagnostic accuracy is often lower, especially when
datasets are small. Analyses should take this uncertainty
into account [33, 34].
The appropriate threshold clearly depends on the clin-

ical context. To decide on invasive surgery would typic-
ally require a higher risk threshold than deciding to send
the patient for magnetic resonance imaging. In health-
care systems with long waiting lists for specialized care,
false positives may be attributed higher costs than what
is given here, as they delay treatment for patients who
do need it. In addition, reliable data on cost and benefit
estimates are rarely available, and if they are, they may
not be transportable in time and space. The best risk
threshold is therefore not directly derivable from the
dataset used to develop or validate a risk model.

Myth 3: the threshold is part of the model – no, a model
can be validated for multiple risk thresholds
A risk prediction model can be used in multiple clinical
contexts. In practice, reliable data on all costs involved

Table 3 Health-economic perspectives and clinical judgment in
prediction modeling

Risk thresholds ideally reflect the clinical context by balancing the benefits
of correct decisions against the costs of incorrect decisions. Health
economists often prefer to value outcomes of decisions in terms of
quality-adjusted life-years, which combine mortality and quality of life in a
single measure. Utility values (like quality of life) can be elicited using vari-
ous formal methods [16], and physicians’ judgements tend to differ from
patients’ views, which ultimately matter more [17–19]. Thus, quantifying
costs and benefits (or ‘utilities’) should be done carefully [20].

In addition, health policy frequently involves a trade-off between monet-
ary costs and health outcomes. To reach a societal optimum, monetary
costs need to be calculated from the societal perspective (rather than
the perspective of the healthcare provider or the individual patient), by
including, for example, lost productivity due to time off work [21]. In
theory, a risk threshold can be determined to minimize a composite of
clinical outcomes and monetary cost, but this would require expression
of the willingness-to-pay [16, 21, 22]. The details of costs, utilities and
loss functions to optimize the threshold in health economics are be-
yond the scope of the current paper.

Besides data on costs and benefits [23], the results of validation
studies describing the predictive performance of risk models are
also instrumental to optimize the risk threshold in a health
economic analysis. Briefly, if a risk prediction model is perfectly
calibrated, the threshold is a function of the costs or utilities alone
[24]. If not perfectly calibrated, the prevalence in the population and
the sensitivity and specificity of the model at each potential
threshold also play a role [16, 21]. Either way, measures of
calibration and discrimination tend to be over-optimistic when cal-
culated on the model development data, and often vary with the
disease prevalence. Thus, it is crucial to obtain reliable estimates of
predictive performance, preferably from external validation studies in
independent data from the target population [1, 2]. It would be a
premature decision to determine the risk threshold before the pre-
dictive performance is thoroughly investigated.

While predictive performance is one input determining the optimal
threshold, reliable data on costs or utilities are often not available in
the process of validating a risk prediction model. Fortunately, the
prediction modeler does not have to find the most optimal threshold
from a health economic perspective to evaluate a model’s predictive
performance. At the stage of model validation, it is often sufficient to
consider a broad range of reasonable risk thresholds. This range can
be set by asking for sensible upper and lower bounds on the
maximum number of false positives one would tolerate to find one
true positive [23]. For example, if a detected ovarian cancer is worth
16 unnecessary surgical interventions, an appropriate risk threshold for
surgery would be 1/(1 + 16) = 6%. A risk-averse person would perhaps
tolerate more unnecessary surgical interventions and motivate a lower
bound on the risk threshold of 1%. In a clinical context, and in particu-
lar with severe illness, the upper bound on the risk threshold usually
does not exceed 50% – an undetected case is generally considered
more harmful than a false positive case. (For another example of set-
ting a range of reasonable thresholds, see [23].) This chosen range of
reasonable thresholds can be used to show how the model performs
with different thresholds.

It is only after a risk model is validated that a health economic analysis
could optimize the risk threshold, based on the model’s demonstrated
predictive performance, its positioning in the care pathway (e.g., in a
sequence of tests [25]), the available healthcare resources, the disease
prevalence, and the harms and benefits of decisions. Developing a
model, validating the predictive performance, and determining a risk
threshold are separate and demanding tasks.
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are often difficult to collect and may vary between
healthcare systems. Thus, the calculation of a universal
risk threshold for decision-making is often impossible.
Even a widely agreed-upon threshold may be subject to
change and debate. For example, in 2013, commonly ac-
cepted thresholds for primary prevention of cardiovascu-
lar disease were lowered by the American Heart
Association/American College of Cardiology guidelines,
while the subsequent U.S. Preventive Services Task
Force guideline raised the threshold [35, 36]. The
current threshold is still too low according to detailed
recent analyses of harms and benefits [31, 35, 36]. This
has implications for performance evaluation of predic-
tion models, as it would be undesirable for performance
measures to reflect an arbitrarily chosen risk threshold.
The statistical evaluation of predictions can be done
without having to choose risk thresholds, by means of
the AUC and measures of calibration that assess the cor-
respondence between predicted and observed risks
(Table 1) [1, 2].
Measures of classification, in contrast, do require risk

thresholds. Researchers often present a model’s sensi-
tivity, specificity, positive predictive value or negative
predictive value (Table 1). These measures are all de-
rived from a cross-tabulation of classifications with the
true disease status after applying a risk threshold. Al-
though these statistics have easy clinical interpretations,
they have several limitations [25]. One limitation is that
their values depend heavily on the chosen risk thresh-
old. It is crucial to realize that there is no such thing as
‘the’ sensitivity of a risk model. Sensitivity and negative
predictive value increase to a maximum of one as the

threshold is lowered, while specificity and positive pre-
dictive value rise to a maximum of one as the threshold
is increased (Table 5). Thus, when developing and val-
idating a risk model, a reasonable alternative is to con-
sider a range of acceptable risk thresholds, reflecting
different assumed costs (Table 3) [23, 37]. In Table 5,
we focus on thresholds up to 50%, reflecting that the
benefit of a true positive outweighs the harm of a false
positive.

Additionally, a decision curve analysis can be pre-
sented to evaluate a model’s clinical utility for decision-
making. A decision curve is a plot of net benefit for a
range of relevant risk thresholds, where net benefit is
proportional to the number of true positives minus the
number of false positives multiplied by CFP

BTP
, measuring,

in essence, to what extent the total benefit by all true
positives outweighs the total cost of all false positives
[23, 37]. The decision curve for ADNEX is plotted in
Additional file 3. Other utility-respecting evaluations of
predictive performance conditional on the threshold
have also been proposed [38, 39]. Rather than summar-
izing the clinical utility of a model at a range of relevant
risk thresholds, the partial AUC summarizes diagnostic
accuracy over a clinically interesting range of specificity
(or sensitivity) [40]. The partial AUC has some limita-
tions, such as conditioning on a classification result
that varies from one sample to the next, and not taking
the cost–benefit ratio of a false positive versus a true
positive into account.
To compare models, for example, a model with and

without a novel biomarker, one may be tempted to

Table 4 Costs of outcomes when making a decision based on a risk threshold

Diseased Not diseased

Intervene
(predicted risk ≥t)

CTP = 15
The cost of detected/treated disease, e.g., risk of death or severe
morbidity despite detection, plus the cost of intervening

CFP = 5
The cost of an unneeded intervention, e.g., invasiveness
of testing, complication risks of treatment

Do not intervene
(predicted risk <t)

CFN = 95
The cost of an undetected disease, i.e., the risk of death or severe
morbidity

CTN = 0
The cost of applying the risk model

Table 5 Classification statistics for a selection of thresholds

Threshold Sensitivity (95% CI) Specificity (95% CI) Positive predictive value (95% CI) Negative predictive value (95% CI)

0.1% 1.00 (1.00–1.00) 0.00 (0.00–0.01) 0.41 (0.39–0.43) 1.00 (0.40–1.00)

6% (Utility-based for costs in Table 4) 0.98 (0.97–0.99) 0.61 (0.59–0.64) 0.64 (0.61–0.66) 0.98 (0.96–0.98)

10% 0.97 (0.95–0.98) 0.70 (0.67–0.72) 0.69 (0.66–0.71) 0.97 (0.96–0.98)

20% 0.93 (0.91–0.94) 0.80 (0.78–0.82) 0.76 (0.73–0.78) 0.94 (0.92–0.95)

31% (minimize misclassification) 0.88 (0.86–0.90) 0.85 (0.83–0.87) 0.80 (0.78–0.83) 0.91 (0.89–0.93)

41% (prevalence) 0.83 (0.80–0.85) 0.88 (0.86–0.90) 0.83 (0.80–0.85) 0.88 (0.86–0.90)

50% 0.76 (0.74–0.79) 0.90 (0.89–0.92) 0.85 (0.82–0.87) 0.85 (0.83–0.86)

99.9% 0.00 (0.00–0.01) 1.00 (1.00–1.00) 1.00 (0.02–1.00) 0.59 (0.57–0.61)
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believe its clinical utility is demonstrated if patients with
the disease move to a higher risk group and patients
without the disease move to a lower risk group after
addition of the marker to a model; this is measured by
reclassification statistics such as net reclassification im-
provement. The results of such an analysis again depend
on the chosen risk thresholds to define groups; in
addition, they may favor miscalibrated models [41–43].
When comparing risk models based on partial AUC, one
could be comparing models at different ranges of risk
thresholds. Better alternatives are to calculate the differ-
ence in (full) AUC, use likelihood-based statistics, or to
conduct a decision curve analysis to compare competing
models when accounting for costs and benefits of deci-
sions [23, 37].

Conclusion
Clinical prediction models are helpful for decision-
making in clinical practice. For this purpose, reliable
continuous risk estimates are key. If risk thresholds are
needed to identify high-risk patients, optimal thresholds
cannot be calculated from the data on predictors and
the true disease status alone. Instead, the choice of
threshold should reflect the harms of false positives and
the benefits of true positives, which varies depending on
the clinical context. We propose focusing on methods
that evaluate predictive performance independent of risk
thresholds (such as AUC and calibration plots) or in-
corporate a range of risk thresholds (such as decision
curve analysis). If a risk threshold is required, we advise
the performance of a health economic analysis after the
model has been validated.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12916-019-1425-3.

Additional file 1. Csv file containing the predicted probabilities of
malignancy by the ADNEX model and the true outcomes (1 = malignant,
0 = benign).

Additional file 2. Word file containing annotated R code to replicate
the analyses.

Additional file 3. Decision curve analysis comparing the utility of the
ADNEX model for clinical decision-making to treating all patients and
treating none of the patients.
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