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Abstract

Background: The assessment of calibration performance of risk prediction models based on regression or more
flexible machine learning algorithms receives little attention.

Main text: Herein, we argue that this needs to change immediately because poorly calibrated algorithms can be
misleading and potentially harmful for clinical decision-making. We summarize how to avoid poor calibration at
algorithm development and how to assess calibration at algorithm validation, emphasizing balance between model
complexity and the available sample size. At external validation, calibration curves require sufficiently large samples.
Algorithm updating should be considered for appropriate support of clinical practice.

Conclusion: Efforts are required to avoid poor calibration when developing prediction models, to evaluate
calibration when validating models, and to update models when indicated. The ultimate aim is to optimize the
utility of predictive analytics for shared decision-making and patient counseling.
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Background
Medical predictive analytics have gained popularity
in recent years, with numerous publications focusing
on models that estimate patients’ risk of a disease or
a future health state (the ‘event’) based on classical
regression algorithms or modern flexible machine
learning or artificial intelligence algorithms [1–3].
These predictions may support clinical decision-
making and better inform patients. Algorithms (or
risk prediction models) should give higher risk esti-
mates for patients with the event than for patients
without the event (‘discrimination’). Typically, dis-
crimination is quantified using the area under the
receiver operating characteristic curve (AUROC or
AUC), also known as the concordance statistic or c-
statistic. Additionally, it may be desirable to present
classification performance at one or more risk
thresholds such as sensitivity, specificity, and

(stratum-specific) likelihood ratios. Herein, we focus
on calibration, another key aspect of performance
that is often overlooked. We define calibration, de-
scribe why it is important, outline causes for poor
calibration, and summarize how calibration can be
assessed.

Main text
Discrimination is important, but are the risk estimates
reliable?
It is often overlooked that estimated risks can be
unreliable even when the algorithms have good dis-
crimination. For example, risk estimates may be sys-
tematically too high for all patients irrespective of
whether they experienced the event or not. The ac-
curacy of risk estimates, relating to the agreement
between the estimated and observed number of
events, is called ‘calibration’ [4]. Systematic reviews
have found that calibration is assessed far less often
than discrimination [2, 3, 5–7], which is problematic
since poor calibration can make predictions mislead-
ing [8]. Previous work has highlighted that the use
of different types of algorithms, varying from regres-
sion to flexible machine learning approaches, can
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lead to models that suffer greatly from poor calibra-
tion [9, 10]. Calibration has therefore been labeled
the ‘Achilles heel’ of predictive analytics [11].
Reporting on calibration performance is recom-
mended by the TRIPOD (Transparent Reporting of
a multivariable prediction model for Individual
Prognosis Or Diagnosis) guidelines for prediction
modeling studies [12]. Calibration is especially im-
portant when the aim is to support decision-making,
even when discrimination is moderate such as for
breast cancer prediction models [13]. We explain
the relevance of calibration in this paper and sug-
gest solutions to prevent or correct poor calibration
and thus make predictive algorithms more clinically
relevant.

How can inaccurate risk predictions be misleading?
If the algorithm is used to inform patients, poorly cal-
ibrated risk estimates lead to false expectations with
patients and healthcare professionals. Patients may
make personal decisions in anticipation of an event,
or the absence thereof, that were in fact misguided.
Take, for example, a prediction model that predicts
the chance that in vitro fertilization (IVF) treatment
leads to a live birth [14]. Irrespective of how well the
models can discriminate between treatments that end
in live birth versus those that do not, it is clear that
strong over- or underestimation of the chance of a
live birth makes the algorithms clinically unaccept-
able. For instance, a strong overestimation of the
chance of live birth after IVF would give false hope
to couples going through an already stressful and
emotional experience. Treating a couple who, in real-
ity, has a favorable prognosis exposes the woman un-
necessarily to possible harmful side effects, e.g.,
ovarian hyperstimulation syndrome.
In fact, poor calibration may make an algorithm less

clinically useful than a competitor algorithm that has
a lower AUC but is well calibrated [8]. As an ex-
ample, consider the QRISK2–2011 and NICE Fra-
mingham models to predict the 10-year risk of
cardiovascular disease. An external validation study of
these models in 2 million patients from the United
Kingdom indicated that QRISK2–2011 was well cali-
brated and had an AUC of 0.771, whereas NICE Fra-
mingham was overestimating risk, with an AUC of
0.776 [15]. When using the traditional risk threshold
of 20% to identify high-risk patients for intervention,
QRISK2–2011 would select 110 per 1000 men aged
between 35 and 74 years. On the other hand, NICE
Framingham would select almost twice as many (206
per 1000 men) because a predicted risk of 20% based
on this model actually corresponded to a lower event
rate. This example illustrates that overestimation of

risk leads to overtreatment. Conversely, underestima-
tion leads to undertreatment.

Why may an algorithm give poorly calibrated risk
predictions?
Many possible sources may distort the calibration of
risk predictions. A first set of causes relates to vari-
ables and characteristics unrelated to algorithm de-
velopment. Often, patient characteristics and disease
incidence or prevalence rates vary greatly between
health centers, regions, and countries [16]. When an
algorithm is developed in a setting with a high dis-
ease incidence, it may systematically give overesti-
mated risk estimates when used in a setting where
the incidence is lower [17]. For example, university
hospitals may treat more patients with the event of
interest than regional hospitals; such heterogeneity
between settings can affect risk estimates and their
calibration [18]. The predictors in the algorithm
may explain a part of the heterogeneity, but often
differences between predictors will not explain all
differences between settings [19]. Patient popula-
tions also tend to change over time, e.g., due to
changes in referral patterns, healthcare policy, or
treatment policies [20, 21]. For example, in the last
10 years, there has been a drive in Europe to lower
the number of embryos transferred in IVF and im-
provements in IVF cryopreservation technology led
to an increase in embryo freezing and storage for
subsequent transfer [22]; such evolutions may
change the calibration of algorithms that predict
IVF success [23].
A second set of causes relates to methodological prob-

lems regarding the algorithm itself. Statistical overfitting is
common. It is caused by a modeling strategy that is too
complex for the amount of data at hand (e.g., too many
candidate predictors, predictor selection based on statis-
tical significance, use of a very flexible algorithm such as a
neural network) [24]. Overfitted predictions capture too
much random noise in the development data. Thus, when
validated on new data, an overfitted algorithm is expected
to show lower discrimination performance and predicted
risks that are too extreme – patients at high risk of the
event tend to get overestimated risk predictions, whereas
patients at low risk of the event tend to get underesti-
mated risk predictions. Apart from statistical overfitting,
medical data usually contain measurement error, for ex-
ample, biomarker expressions vary with assay kits and
ultrasound measurement of tumor vascularity has inter-
and intra-observer variability [25, 26]. If measurement
error systematically differs between settings (e.g., measure-
ments of a predictor are systemically more biased upward
in a different setting), this affects the predicted risks and
thus calibration of an algorithm [27].
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How to assess calibration?
The concepts explained in this section are illustrated in
Additional file 1, with the validation of the Risk of Ovar-
ian Malignancy Algorithm (ROMA) for the diagnosis of
ovarian malignancy in women with an ovarian tumor

selected for surgical removal [28]; further details can be
found elsewhere [1, 4, 29].
According to four increasingly stringent levels of cali-

bration, models can be calibrated in the mean, weak,
moderate, or strong sense [4]. First, to assess ‘mean

Fig. 1 Illustrations of different types of miscalibration. Illustrations are based on an outcome with a 25% event rate and a model with an area
under the ROC curve (AUC or c-statistic) of 0.71. Calibration intercept and slope are indicated for each illustrative curve. a General over- or
underestimation of predicted risks. b Predicted risks that are too extreme or not extreme enough
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calibration’ (or ‘calibration-in-the-large’), the average
predicted risk is compared with the overall event rate.
When the average predicted risk is higher than the over-
all event rate, the algorithm overestimates risk in gen-
eral. Conversely, underestimation occurs when the
observed event rate is higher than the average predicted
risk.
Second, ‘weak calibration’ means that, on average,

the model does not over- or underestimate risk and
does not give overly extreme (too close to 0 and 1)
or modest (too close to disease prevalence or inci-
dence) risk estimates. Weak calibration can be
assessed by the calibration intercept and calibration
slope. The calibration slope evaluates the spread of
the estimated risks and has a target value of 1. A
slope < 1 suggests that estimated risks are too ex-
treme, i.e., too high for patients who are at high risk
and too low for patients who are at low risk. A
slope > 1 suggests the opposite, i.e., that risk esti-
mates are too moderate. The calibration intercept,
which is an assessment of calibration-in-the-large,
has a target value of 0; negative values suggest over-
estimation, whereas positive values suggest
underestimation.
Third, moderate calibration implies that estimated

risks correspond to observed proportions, e.g., among
patients with an estimated risk of 10%, 10 in 100
have or develop the event. This is assessed with a
flexible calibration curve to show the relation between
the estimated risk (on the x-axis) and the observed
proportion of events (y-axis), for example, using loess
or spline functions. A curve close to the diagonal in-
dicates that predicted risks correspond well to ob-
served proportions. We show a few theoretical curves
in Fig. 1a,b, each of which corresponds to different
calibration intercepts and slopes. Note that a calibra-
tion intercept close to 0 and a calibration slope close
to 1 do not guarantee that the flexible calibration
curve is close to the diagonal (see Additional file 1
for an example). To obtain a precise calibration curve,
a sufficiently large sample size is required; a mini-
mum of 200 patients with and 200 patients without
the event has been suggested [4], although further re-
search is needed to investigate how factors such as
disease prevalence or incidence affect the required
sample size [12]. In small datasets, it is defendable to
evaluate only weak calibration by calculating the cali-
bration intercept and slope.
Fourth, strong calibration means that the predicted

risk corresponds to the observed proportion for every
possible combination of predictor values; this implies
that calibration is perfect and is a utopic goal [4].
The commonly used Hosmer–Lemeshow test is

often presented as a calibration test, though it has

many drawbacks – it is based on artificially group-
ing patients into risk strata, gives a P value that is
uninformative with respect to the type and extent of
miscalibration, and suffers from low statistical
power [1, 4]. Therefore, we recommend against
using the Hosmer–Lemeshow test to assess
calibration.

How to prevent or correct poor calibration?
When developing a predictive algorithm, the first
step involves the control of statistical overfitting. It
is important to prespecify the modeling strategy and
to ensure that sample size is sufficient for the num-
ber of considered predictors [30, 31]. In smaller
datasets, procedures that aim to prevent overfitting
should be considered, e.g., using penalized regres-
sion techniques such as Ridge or Lasso regression
[32] or using simpler models. Simpler models can
refer to fewer predictors, omitting nonlinear or
interaction terms, or using a less flexible algorithm
(e.g., logistic regression instead of random forests or
a priori limiting the number of hidden neurons in a
neural network). However, using models that are
too simple can backfire (Additional file 1), and pen-
alization does not offer a miracle solution for uncer-
tainty in small datasets [33]. Therefore, in small
datasets, it is reasonable for a model not to be de-
veloped at all. Additionally, internal validation pro-
cedures can quantify the calibration slope. At
internal validation, calibration-in-the-large is irrele-
vant since the average of predicted risks will match
the event rate. In contrast, calibration-in-the-large is
highly relevant at external validation, where we
often note a mismatch between the predicted and
observed risks.
When we find poorly calibrated predictions at val-

idation, algorithm updating should be considered to
provide more accurate predictions for new patients
from the validation setting [1, 20]. Updating of
regression-based algorithms may start with changing
the intercept to correct calibration-in-the-large [34].
Full refitting of the algorithm, as in the case study
below, will improve calibration if the validation sam-
ple is relatively large [35]. We present a detailed il-
lustration of updating of the ROMA model in
Additional file 1. Continuous updating strategies are
also gaining in popularity; such strategies dynamically
address shifts in the target population over time [36].

Published case study on the diagnosis of obstructive
coronary artery disease
Consider a logistic regression model to predict ob-
structive coronary artery disease (oCAD) in patients
with stable chest pain and without a medical history
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Fig. 2 (See legend on next page.)
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of oCAD [37]. The model was developed on data
from 5677 patients recruited at 18 European and
American centers, of whom 31% had oCAD. The al-
gorithm was externally validated on data from 4888
patients in Innsbruck, Austria, of whom 44% had
oCAD [38]. The algorithm had an AUC of 0.69.
Calibration suggested a combination of overesti-
mated (intercept − 1.04) and overly extreme risk pre-
dictions (slope 0.63) (Fig. 2a). Calibration was
improved by refitting the model, i.e., by re-
estimating the predictor coefficients (Fig. 2b).

Conclusions
The key arguments of this paper are summarized in
Table 1. Poorly calibrated predictive algorithms can be
misleading, which may result in incorrect and potentially
harmful clinical decisions. Therefore, we need prespeci-
fied modeling strategies that are reasonable with respect
to the available sample size. When validating algorithms
it is imperative to evaluate calibration using appropriate

measures and visualizations – this helps us to under-
stand how the algorithm performs in a particular setting,
where predictions may go wrong, and whether the algo-
rithm can benefit from updating. Due to local healthcare
systems and referral patterns, population differences be-
tween centers and regions are expected; it is likely that
prediction models do not include all the predictors
needed to accommodate these differences. Together with
the phenomenon of population drifts, models ideally re-
quire continued monitoring in local settings in order to
maximize their benefit over time. This argument will be-
come even more vital with the growing popularity of
highly flexible algorithms. The ultimate aim is to
optimize the utility of predictive analytics for shared
decision-making and patient counseling.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12916-019-1466-7.

Additional file 1. Detailed illustration of the assessment of calibration
and model updating: the ROMA logistic regression model.
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Table 1 Summary points on calibration

Why calibration
matters

- Decisions are often based on risk, so predicted
risks should be reliable

- Poor calibration may make a prediction model
clinically useless or even harmful

Causes of poor
calibration

- Statistical overfitting and measurement error

- Heterogeneity in populations in terms of
patient characteristics, disease incidence or
prevalence, patient management, and treatment
policies

Assessment of
calibration in
practice

- Perfect calibration, where predicted risks are
correct for every covariate pattern, is utopic;
we should not aim for that

- At model development, focus on nonlinear
effects and interaction terms only if a sufficiently
large sample size is available; low sample sizes
require simpler modeling strategies or that no
model is developed at all

- Avoid the Hosmer–Lemeshow test to assess
or prove calibration

- At internal validation, focus on the calibration
slope as a part of the assessment of statistical
overfitting

- At external validation, focus on the
calibration curve, intercept and slope

- Model updating should be considered in
case of poor calibration; re-estimating the
model entirely requires sufficient data

(See figure on previous page.)
Fig. 2 Calibration curves when validating a model for obstructive coronary artery disease before and after updating. a Calibration curve before
updating. b Calibration curve after updating by re-estimating the model coefficients. The flexible curve with pointwise confidence intervals (gray
area) was based on local regression (loess). At the bottom of the graphs, histograms of the predicted risks are shown for patients with (1) and
patients without (0) coronary artery disease. Figure adapted from Edlinger et al. [38], which was published under the Creative Commons
Attribution–Noncommercial (CC BY-NC 4.0) license

Van Calster et al. BMC Medicine          (2019) 17:230 Page 6 of 7

https://doi.org/10.1186/s12916-019-1466-7
https://doi.org/10.1186/s12916-019-1466-7
http://stratos-initiative.org/


Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Development and Regeneration, KU Leuven, Herestraat 49
box 805, 3000 Leuven, Belgium. 2Department of Biomedical Data Sciences,
Leiden University Medical Center, Leiden, Netherlands. 3Medical Statistics
Team, Institute of Applied Health Sciences, School of Medicine, Medical
Sciences and Nutrition, University of Aberdeen, Aberdeen, UK. 4Department
of Clinical Epidemiology, Leiden University Medical Center, Leiden,
Netherlands. 5Department of Epidemiology, CAPHRI Care and Public Health
Research Institute, Maastricht University, Maastricht, Netherlands. 6http://
www.stratos-initiative.org.

Received: 24 July 2019 Accepted: 10 November 2019

References
1. Steyerberg EW. Clinical prediction models. New York: Springer; 2009.
2. Wessler BS, Paulus J, Lundquist CM, et al. Tufts PACE clinical predictive

model registry: update 1990 through 2015. Diagn Progn Res. 2017;1:10.
3. Kleinrouweler CE, Cheong-See FM, Collins GS, et al. Prognostic models in obstetrics:

available, but far from applicable. Am J Obstet Gynecol. 2016;214:79–90.
4. Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg

EW. A calibration hierarchy for risk models was defined: from utopia to
empirical data. J Clin Epidemiol. 2016;74:167–76.

5. Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable
prediction models: a systematic review of methodological conduct and
reporting. BMC Med Res Methodol. 2014;14:40.

6. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B.
A systematic review shows no performance benefit of machine learning
over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;
110:12–22.

7. Bouwmeester W, Zuithoff NPA, Mallett S, et al. Reporting and methods in
clinical prediction research: a systematic review. PLoS Med. 2012;9:1–12.

8. Van Calster B, Vickers AJ. Calibration of risk prediction models: impact on
decision-analytic performance. Med Decis Mak. 2015;35:162–9.

9. Van Hoorde K, Van Huffel S, Timmerman D, Bourne T, Van Calster B. A
spline-based tool to assess and visualize the calibration of multiclass risk
predictions. J Biomed Inform. 2015;54:283–93.

10. Van der Ploeg T, Nieboer D, Steyerberg EW. Modern modeling techniques
had limited external validity in predicting mortality from traumatic brain
injury. J Clin Epidemiol. 2016;78:83–9.

11. Shah ND, Steyerberg EW, Kent DM. Big data and predictive analytics:
recalibrating expectations. JAMA. 2018;320:27–8.

12. Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a
multivariable prediction model for Individual Prognosis or Diagnosis
(TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1–W73.

13. Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning
mammography-based model for improved breast cancer risk prediction.
Radiology. 2019;292:60–6.

14. Dhillon RK, McLernon DJ, Smith PP, et al. Predicting the chance of live birth
for women undergoing IVF: a novel pretreatment counselling tool. Hum
Reprod. 2016;31:84–92.

15. Collins GS, Altman DG. Predicting the 10 year risk of cardiovascular disease
in the United Kingdom: independent and external validation of an updated
version of QRISK2. BMJ. 2012;344:e4181.

16. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

17. Testa A, Kaijser J, Wynants L, et al. Strategies to diagnose ovarian cancer:
new evidence from phase 3 of the multicentre international IOTA study. Br
J Cancer. 2014;111:680–8.

18. Riley RD, Ensor J, Snell KI, et al. External validation of clinical prediction
models using big datasets from e-health records or IPD meta-analysis:
opportunities and challenges. BMJ. 2016;353:i3140.

19. Steyerberg EW, Roobol MJ, Kattan MW, van der Kwast TH, de Koning HJ,
Schröder FH. Prediction of indolent prostate cancer: validation and
updating of a prognostic nomogram. J Urol. 2007;177:107–12.

20. Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration drift in
regression and machine learning models for acute kidney injury. J Am Med
Inform Assoc. 2017;24:1052–61.

21. Thai TN, Ebell MH. Prospective validation of the good outcome following
attempted resuscitation (GO-FAR) score for in-hospital cardiac arrest
prognosis. Resuscitation. 2019;140:2–8.

22. Leijdekkers JA, Eijkemans MJC, van Tilborg TC, et al. Predicting the
cumulative chance of live birth over multiple complete cycles of in vitro
fertilization: an external validation study. Hum Reprod. 2018;33:1684–95.

23. te Velde ER, Nieboer D, Lintsen AM, et al. Comparison of two models
predicting IVF success; the effect of time trends on model performance.
Hum Reprod. 2014;29:57–64.

24. Steyerberg EW, Uno H, Ioannidis JPA, Van Calster B. Poor performance of
clinical prediction models: the harm of commonly applied methods. J Clin
Epidemiol. 2018;98:133–43.

25. Murthy V, Rishi A, Gupta S, et al. Clinical impact of prostate specific antigen
(PSA) inter-assay variability on management of prostate cancer. Clin
Biochem. 2016;49:79–84.

26. Wynants L, Timmerman D, Bourne T, Van Huffel S, Van Calster B. Screening
for data clustering in multicenter studies: the residual intraclass correlation.
BMC Med Res Methodol. 2013;13:128.

27. Luijken K, Groenwold RHH, Van Calster B, Steyerberg EW, van Smeden M.
Impact of predictor measurement heterogeneity across settings on
performance of prediction models: a measurement error perspective. Stat
Med. 2019;38:3444–59.

28. Moore RG, McMeekin DS, Brown AK, et al. A novel multiple marker bioassay
utilizing HE4 and CA125 for the prediction of ovarian cancer in patients
with a pelvic mass. Gynecol Oncol. 2009;112:40–6.

29. Austin PC, Steyerberg EW. Graphical assessment of internal and external
calibration of logistic regression models by using loess smoothers. Stat Med.
2014;33:517–35.

30. van Smeden M, Moons KGM, de Groot JA, et al. Sample size for binary
logistic prediction models: beyond events per variable criteria. Stat Meth
Med Res. 2019;28:2455–74.

31. Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a
multivariable prediction model: PART II - binary and time-to-event
outcomes. Stat Med. 2019;38:1276–96.

32. Moons KGM, Donders AR, Steyerberg EW, Harrell FE. Penalized maximum
likelihood estimation to directly adjust diagnostic and prognostic prediction
models for overoptimism: a clinical example. J Clin Epidemiol. 2004;57:
1262–70.

33. Van Calster B, van Smeden M, Steyerberg EW. On the variability of
regression shrinkage methods for clinical prediction models: simulation
study on predictive performance. arXiv. 2019; https://arxiv.org/abs/1907.114
93. Accessed 10 Oct 2019.

34. Steyerberg EW, Borsboom GJJM, van Houwelingen HC, Eijkemans MJC,
Habbema JDF. Validation and updating of predictive logistic regression
models: a study on sample size and shrinkage. Stat Med. 2004;23:2567–86.

35. Su TL, Jaki T, Hickey GL, Buchan I, Sperrin M. A review of statistical updating
methods for clinical prediction models. Stat Meth Med Res. 2018;27:185–97.

36. Hickey GL, Grant SW, Caiado C, et al. Dynamic prediction modeling
approaches for cardiac surgery. Circ Cardiovasc Qual Outcomes. 2013;6:649–58.

37. Genders TSS, Steyerberg EW, Hunink MG, et al. Prediction model to estimate
presence of coronary artery disease: retrospective pooled analysis of
existing cohorts. BMJ. 2012;344:e3485.

38. Edlinger M, Wanitschek M, Dörler J, Ulmer H, Alber HF, Steyerberg EW.
External validation and extension of a diagnostic model for obstructive
coronary artery disease: a cross-sectional predictive evaluation in 4888
patients of the Austrian Coronary Artery disease Risk Determination In
Innsbruck by diaGnostic ANgiography (CARDIIGAN) cohort. BMJ Open. 2017;
7:e014467.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Van Calster et al. BMC Medicine          (2019) 17:230 Page 7 of 7

https://arxiv.org/abs/1907.11493
https://arxiv.org/abs/1907.11493

	Abstract
	Background
	Main text
	Conclusion

	Background
	Main text
	Discrimination is important, but are the risk estimates reliable?
	How can inaccurate risk predictions be misleading?
	Why may an algorithm give poorly calibrated risk predictions?
	How to assess calibration?
	How to prevent or correct poor calibration?
	Published case study on the diagnosis of obstructive coronary artery disease

	Conclusions
	Supplementary information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

