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Scalable and accurate deep learning with electronic health
records

Alvin Rajkomar 2 Eyal Oren’, Kai Chen', Andrew M. Dai', Nissan Hajaj1, Michaela Hardt', Peter J. Liu, Xiaobing Liu', Jake Marcus’,
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Greg S. Corrado’ and Jeffrey Dean’

Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare
quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR
data, a labor-intensive process that discards the vast majority of information in each patient’s record. We propose a representation
of patients’ entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that
deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple
centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic
medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR
data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for
tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93-0.94), 30-day
unplanned readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and all of a patient’s final discharge
diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases.
We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case
study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the
patient’s chart.

npj Digital Medicine (2018)1:18; doi:10.1038/s41746-018-0029-1
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Fig.2 The area under the receiver operating characteristic curves are shown for predictions of inpatient mortality made by deep learning and
baseline models at 12 h increments before and after hospital admission. For inpatient mortality, the deep learning model achieves higher
discrimination at every prediction time compared to the baseline for both the University of California, San Francisco (UCSF) and University of
Chicago Medicine (UCM) cohorts. Both models improve in the first 24 h, but the deep leaming model achieves a similar level of accuracy
approximately 24 h earlier for UCM and even 48 h earlier for UCSF. The error bars represent the bootstrapped 95% confidence interval
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Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

Inpatient Mortality, AUROC(95% CI)

Hospital A

Hospital B

Deep learning 24 hours after admission

Full feature enhanced baseline at 24 hours after admission
Full feature simple baseline at 24 hours after admission
Baseline (aEWS?) at 24 hours after admission

0.95(0.94-0.96)
0.93 (0.92-0.95)
0.93(0.91-0.94)
0.85 (0.81-0.89)

0.93(0.92-0.94)
0.91 (0.89-0.92)
0.90 (0.88-0.92)
0.86(0.83-0.88)

30-day Readmission, AUROC (95% CI)

Deep learning at discharge
Full feature enhanced baseline at discharge
Full feature simple baseline at discharge

Baseline (mHOSPITAL?®) at discharge

0.77(0.75-0.78)
0.75 (0.73-0.76)
0.74(0.73-0.76)
0.70(0.68-0.72)

0.76(0.75-0.77)
0.75 (0.74-0.76)
0.73 (0.72-0.74)
0.68 (0.67-0.69)

Length of Stay at least 7 days AUROC (95% CI)

Deep learning 24 hours after admission

Full feature enhanced baseline at 24 hours after admission
Full feature simple baseline at 24 hours after admission
Baseline (mLiu®) at 24 hours after admission

0 86(0 86-0.87)

85 (0.84-0.85)
0 83 (0.82-0.84)
0.76 (0.75-0.77)

0.85(0.85-0.86)
0.83(0.83-0.84)
0.81(0.80-0.82)
0.74(0.73-0.75)

L Area under the receiver operator curve
2 Augmented early warning score

% Modified HOSPITAL score

4 Modified Liu score



Optimised deep learning ensembles
are not the driver of “accuracy”

Logistic regression, subset of covariates -
Logistic regression all covariates -
Log. regression all covariates (crude time adjustment) ~

Ensemble LSTM + TANN -

Logistic regression, subset of covariates -
Logistic regression all covariates -
Log. regression all covariates (crude time adjustment) -

Ensemble LSTM + TANN -

Hospital A
.
I P
L
———
Hospital B
L
&
P

0.84 0.88 0.92 0.96




We presented our “best” model and
compared It to an inappropriate baseline

Hospital A Hospital B
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Effective
visualisation
IS Important

https://www.nytimes.com/interactive/2016/06/24/world/europe/how-

britain-voted-brexit-referendum.html

How Britain Voted in the E.U. Referendum

By GRECOR AISCH, ADAM PEARCE asd KARL RUSSELL  UFDATED

lune 24, 2016

EBritons voted on Thursday to leave the European Union. The
Leave side led with 17.4 million votes, or 52 percent, versus the
Femain side’s 16.1 million, or 48 percent, with a turnout of
around 72 percent. reLaten aRTICLE
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W r' n Figure 11-1 (Page 1 of 1)
Best percentage change from baseline in sum of longest diameters and best overall response

as per investigator by prior LDK378 treatment
(Full analysis set)
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- * Denotes the percentage change from baseline greater than 100.
Source: Table 114, Listing 14.2-1.2 and Listing 16.2.4-1.5
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Visualisation panel

“Visualization and the use of graphics can help at every stage of an analysis,
from the planning and design of an experiment, the very first data explorations,
through to the communication of conclusions and recommendations.
Visualization is more than "plotting data"; it can lead to a deeper understanding
and inform next steps.

The role of the STRATOS visualization panel is to promote the use of good
graphical principles for effective visual communication, providing guidance and
recommendations covering all aspects from the design, implementation and
review of statistical graphics.”



Effective visualisation is important
throughout the workflow

Topic groups

n Missing data

Selection of variables

and functional forms in i
multivariable analysis III .
.--- . e
fer 5 . -
Initial data analysis > II P .

Measurement error and
misclassification

Study design

Evaluating diagnostic
tests and prediction
models

Causal inference

Survival analysis

High-dimensional data



Elements of the initiative

» Graphical principles and thinking
1. Graphics Principles Cheat Sheet
2. Newsletter

« Easing the implementation
3. Graph Gallery
4. Analysis Results Datasets
5. Standardization of most common/important graphs

e Graphics tomorrow ... or today?
6. Question-based visualizations and interactive graphics

...plus overarching stakeholder management and communication



Beautiful but effective?
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Beautiful and effective?

Nigel Richards’s Performance At Nationals
Average scores for 2013 National Scrabble Championship
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Effective data visualisation iIs
effective visual communication

= Effective graphs...
— are visually appealing, intuitive, legible
— use the correct graph type and axis scales
— use proximity & alignment to facilitate comparison
— use labels and annotations to add clarity to the message

* Most importantly, effective use of visualisations
— Enables clear and impactful communication
— Elevates influence with stakeholders
— Facilitates informed decision making



Principles for effective visual communication

Graphical Principles Cheat Sheet

Authors: Mark Baillie, Alison Margolskee,” Baldur Magnusson,' Andrew Wright,! Rugquan You,” van-Toma Vranesic,' Marc Vandemeulebroecke'
Affiliations: "Novartis Pharma AG, Basel, Switzerland; “Novartis institutes for Biomedical Research, Cambridge, MA. United States; *Movartis Institutes for Biomedical Research, Shanghai, China
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Use the cheat sheet for design and planning

Clearly identify the purpose of the
graph, e.g. to deliver a message or

for exploration?
_J

\

Identify the quantitative evidence to
support the purpose

_J

Identify the intended audience )
(specialists, non-specialists, both)

and focus the design to support their
needs )

\
Adapt the design to space or

formatting constraints (e.g. clinical
report, slide deck or publication)

https://graphicsprinciples.qgithub.io/



https://graphicsprinciples.github.io/

Use the cheat sheet for critical review

Facilitating Comparisons
Proximity improves association

Figure 11-1 (Page 1 of 1)
Best percentage change from baseline in sum of longest diameters and best overall response
as per investigator by prior LDK378 treatment

Full analysis set
( v ) Place labels next \ " \ "
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elements to be . =->
compared directly Py J
120 - - .
FD*
100+
20 - Ease visual inspection
60 — Order values to ae . H *
g help compare € . c .
% 40+ across many E . P - 5 : =
E 20 - categories aoo. G
g
& 0 Judgments are .
m -
&0 0 easier to make on +
= 20 a common + -> .
Cl 40 4 vertical scale
>
Z 60
4] Reduce mental arithmetic
B0~ BSH LDE 450mg + AUY 28 mg/m2
100 - EES LOE 450mg + AUY 40 mg/m2 K Plot the final
) &S] LOE 450mg + AUY 55 mg/m2 CR CR comparison e.g. e o,
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- * Denotes the percentage change from baseline greater than 100.
Source: Table 114, Listing 14.2-1.2 and Listing 16.2.4-1.5

5 of interest in itself

Use reference
lines and other
visual anchors.



Use the cheat sheet for critical review

Figure 11-1 (Page 1 of 1)
Best percentage change from baseline in sum of longest diameters and best overall response
as per investigator by prior LDK378 treatment
(Full analysis set)
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100 4 ~
80— Identify the quantitative evidence to
support the purpose
a0~
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]
- 20 \
= Identify the intended audience
= 0= 7] (specialists, non-specialists, both) and
focus the design to support their needs
& 204 B g op )
= W=
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100 EES LOE 450mg + AUY 40 mg/m2
) &S] LOE 450mg + AUY 55 mg/m2 CR CR
-120 R 1.0 600mg + AUY 26 my/m2
LD 680mg + AUY 40 mgim2

- * Denotes the percentage change from baseline greater than 100.
Source: Table 114, Listing 14.2-1.2 and Listing 16.2.4-1.5



This Is a continual process

Planned Treatment: mg
50 - Survival curves
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Three laws for improving visual
communication

Have a clear purpose

— Know the purpose of creating the graph
— ldentify the quantitative evidence to support the purpose
— ldentify the audience and focus the design to support their needs

Show the data clearly

— Choose the appropriate graph type to display your data
— Avoid misrepresentation (use appropriate scales)
— Maximize data to ink ratio (reduce distraction, less is more)

Make the message obvious

— Use proximity and alignment to aid in comparisons
— Minimize mental arithmetic (e.g. plot the difference)
— Use colors and annotations to highlight important details

https://arxiv.org/abs/1903.09512
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Effective visualization is important

for planning

Event free survival endpoint

An EFS event for the key secondary endpoint is defined as a failure to achieve a
CR within 60 days of study treatment, relapse from CR, or death due to any cause,
whichever occurs first.

Treatment >

/)' failure

Relapse <

Study end
Treatment Clinical /{
start response
60 days \
> SCT
e e

Increase in SCT rate confounded with treatment effect i.e. CR rate

Bootstrap sample ordered by HR

60 sampled RATIFY patients (1:1 ratio) with poor FLT3 imbalance
RATIFY EFS (85% ClI)

Operating characteristics —
100 - Power at 10% alpha 24 1
Power at 20% alpha 36
% of trials wrong direction 13 g
TypeS error at 10% 0
80 1 TypesS error at 20% 0
60 2
=
40 H
20
0 !
T T T T
0.125 0.25 0.5 1 2

Hazard ratio and (80% and 80%) CI of EFS (PKC vs PBO)



Effective visualization is important
during exploratory analysis

s & lniiletpis g
SOCIETY Statistics in Society

BATA | EVIDENCE | BECISORE

betl 1] a2

Original Article | & Free Access | me'w ﬂwmm & M\{M?Wﬂ W W PHHW’

Visualization in Bayesian workflow M M € M | "%[ Jw i ”‘% w "

Jonah Gabry g, Daniel Simpson, AkiVehtari, Michael Betancourt, Andrew Gelman D f“ o T :%

First published: 15 January 2019 | https://doi.org/10.1111/rssa.12378 1 IWW "W'?WN . “MW /{hlﬂ] ng 4
A Al

https://mc-stan.org/bayesplot/reference/MCMC-traces.html
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Effective visualization Is important
during exploratory analysis

Visualization in Bayesian Workflow 395

log(t+)

P11 |09I(T1) Blﬂ B‘wz [:3;3 [‘3;4 |:3I15 l:g‘we
(@) (b)

Fig. 5. Diagnostic plots for HMC sampling (models were fitted by using the RStan interface to Stan 2.17
(Stan Development Team, 2017a)): (a) for model 3, a bivariate plot of the log-standard-deviation of the cluster
level slopes (y-axis) against the slope for the first cluster (x-axis) (the green dots indicate starting points of
divergent transitions; this plot can be made by using mecmc_scatter in bayesplot); (b) for model 3, a parallel
co-ordinates plot showing the cluster level slope parameters and their log-standard-deviation log() (the
green lines indicate starting points of divergent transitions; this plot can be made by using memc_parcoord
in bayesplot)



Effective visualization important
for reporting

%improvement in baseline weight through week 12 by subgroup

Weight loss (%)
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Genetic marker positive Is
not predictive of treatment response

Mean treatment difference in weight (%)

+‘ + Genetic marker negative

Genetic marker positive +L

-5.00%
0 4 8 12
Week

The average treatment effect is similar in both the genetic marker positive and
negative subgroups and does not warrant further investigation



How can the VP help
across skill levels?

A survey was sent to associates working

with clinical data Graph and ADaM experience

The purpose to: Expert in both - o

— evaluate ADaM as a data standard for
graph production

— ldentify key issues associates currently
experience

— Explore issues related to role and

experience level 30.00 61.25 9250
Median (80 and 95% CI) SUS score
— 85 respondents

Expert in either -

Average exp. in both -

Average exp. in either -

Minimial - C




Provide access to examples with
code and data

Emsi Password

GRAPH GALLERY ogin

Register, ifyou have not already. Reset password, if you forgot it

Home Samples Gallery Discussion Forum Upload Request RequestforHelp Links FAQ

127 Results

Search

Order by
Search/Filter

Filter

t
\ ‘ | Creating a graph is an iterative process. produce, review and
+ refine.

' { Logic
AND OR

Trastment
Views: 108 Language
R SAS

MATLAB al

Data Types
y Continuous

= (\ |\ Model-based
s /\_\ Qrdina Time-To-
§ Event
% j\,\ Creating a graph is an iterative process. produce, review and
5 N\ f‘-\ refine. Sample Type
Barchart Boxplot
Time Ehm,, ! Distribution Dotplot
Forestplot Lineplot
. i : : Other Panel
° : T Patient Scatterplot
Views: 100 profileflisting Spaghett

Survival Time Line



How can the VP help with
Implementation across skill levels?

(Negative) qualitative comments

= Complex graphs such as Forest Plots will need a fair amount of
data manipulation to get all needed for input to the graph

= some variables needed for graphs are not in ADaM datasets

* Trying to figure out what the different parameters mean and extracting
the information relevant to my task.



ORIGINAL ARTICLE

Aliskiren, Enalapril, or Aliskiren and Enalapril in Heart Failure

John |.V. McMurray, M.D., Henry Krum, M.B., B.S., Ph.D., William T. Abraham, M.D., Kenneth Dickstein, M.D., Ph.D., Lars V. Keber, M.D., D.M.5¢., Akshay S. Desai, M.D.,
M.P.H., Scott D. Solomon, M.D., Nicola Greenlaw, M.Sc., M. Atif Ali, B.A., Yanntong Chiang, Ph.D., Qing Shao, Ph.D., Georgia Tarnesby, M.B., B.Chir,, et al., for the
ATMOSPHERE Committees InvestigatorsT
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Table 2. Protocol-Specified Primary and Secondary Outcomes.*

Outcome

Primary composite outcome: death from cardiovascular causes or
first hospitalization for worsening heart failure — no. (%)

Death from cardiovascular causes
First hospitalization for worsening heart failure
Secondary outcome: change in KCCQ clinical summary score at
12 mot

Other prespecified exploratory outcomes — no. (%)%

Death from cardiovascular causes, hospitalization for heart
failure, nonfatal myocardial infarction, nonfatal stroke, or
resuscitated cardiac arrest

Fatal or nonfatal myocardial infarction

Fatal or nonfatal stroke

First resuscitated cardiac arrest

Death from any cause

Composite renal outcome — no. (%)f

Combination
Therapy
(N=2340)

770 (32.9)
512 (21.9)
430 (18.4)

-5.04+0.56

841 (35.9)

88 (3.8)
87 (3.7)
31(1.3)

595 (25.4)

39 (1.7)

Aliskiren
(N=2340)

791 (33.8)

562 (24.0)

442 (18.9)

-6.0320.57

874 (37.4)

84 (3.6)

103 (4.4)

35 (1.5)

654 (27.9)

26 (1.1)

Enalapril
(N=2336)

308 (34.6)
547 (23.4)
452 (19.3)

-5.01+0.55

877 (37.5)

100 (4.3)
93 (4.0)
32 (1.4)

646 (27.7)

18 (0.8)

Combination Therapy vs.

Enalapril
Hazard Ratio or
Difference
(95% Cl) P Value
093 0.17
(0.85 to 1.03)
0.93 0.23
(0.82 to 1.05)
0.93 0.29
(0.82 to 1.06)
-0.03 0.97

(-1.56 to 1.50)

0.94 0.23
(0.86 to 1.04)

0.87 0.36
(0.66 to 1.16)

0.93 0.65
(0.70to 1.25)

0.96 0.86
(0.58 0 1.57)

0.1 0.12
(0.82 t0 1.02)

217 0.007

(1.24 10 3.79)

Aliskiren vs. Enalapril

Hazard Ratio or

Difference
(95% ClI)

0.99
(0.90 to 1.10)

1.06
(0.94 to 1.19)

0.99
(0.87 to 1.13)

-1.02
(-2.56 0 0.52)

1.01
(0.92 to 1.11)

0.85
(0.64 to 1.14)

112
(0.85 to 1.49)

1.10
(0.68 to 1.78)

1.04
(0.93 to 1.16)

1.50
(0.82 to 2.74)

P Value
0.91

034

0.91

0.20

0.80

0.28

0.42

0.69

0.46

0.18




Analysis results data sets
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Combination

Aliskiren Enalapril

A Primary Composite End Point

100+
90+

Combination vs. enalapril
Hazard ratio, 0.93 (95% CI, 0.85-1.03)
804 P=0.17
70 Aliskiren vs. enalapril
Hazard ratio, 0.99 (95% CI, 0.90-1.10)

B Death from Cardiovascular Causes

100+
Combination vs. enalapril
909 Hazard ratio, 0.93 (95% CI, 0.82-1.05)
804 P=0.23

704 Aliskiren vs. enalapril

Hazard ratio, 1.06 (95% CI, 0.94-1.19)
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Open challenges: communicating
uncertainty | ,

Communicating uncertainty about facts, S
numbers and science —
Anne Marthe van der Bles, Sander van der Linden, Alexandra L. J. Freeman,

James Mitchell, Ana B. Galvao, Lisa Zaval and David J. Spiegelhalter Hf{,ff*'“_h“‘m,mhm 3
Published: 08 May 2019 https://doi.org/10.1098/rs0s.181870 xh&“““u&__ﬁfff*f’ o
Editorial e

Moving to a World Beyond “p <0.05”
Ronald L. Wasserstein, Allen L. Schirm & Nicole A. Lazar - desi

Pages 1-19 | Published online: 20 Mar 2019

fi it o : 3. %
m Check for updates hazard ratio associated with immunotherapy

66 Download citation @& https://doi.org/10.1080/00031305.2019.1583913
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Analyse questions not data

How robust is the responder rate to changes in responder definition cut-off?
Cut-off used to define response
25 8 20
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Analyse questions not data

How robust is the responder rate to changes in responder definition cut-off?
Cut-off used to define response
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Analyse questions not data

How robust is the responder rate to changes in responder definition cut-off?

Cut-off used to define response

Improvement vs. Baseline
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Elements of a STRATOS VP Initiative

Topic groups

Missing data

Selection of variables

and functional forms in
multivariable analysis III
I.-—-
Initial data analysis > I o

Measurement error and
misclassification

Study design

Evaluating diagnostic
tests and prediction
models

Causal inference

Survival analysis »”

High-dimensional data



Effective data visualisation iIs
effective visual communication

= Effective graphs...
— are visually appealing, intuitive, legible
— use the correct graph type and axis scales
— use proximity & alignment to facilitate comparison
— use labels and annotations to add clarity to the message

* Most importantly, effective use of visualisations
— Enables clear and impactful communication
— Elevates influence with stakeholders
— Facilitates informed decision making
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