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PA and Health Outcomes

ñ PA has been linked to many health outcomes (cancer,
diabetes, cardiovascular disease, obesity, quality of life)

ñ Epidemiologic studies usually concentrate on long-term
average (" ") PA assessed by  questionnairesusual self-report

ñ Recent intervention studies have been focusing on repeated
objective short-term measures PA  using accelerometers

ñ Problem: measurement error in assessment of PA should be
taken into account



PA and Longitudinal Studies

ñ PA is characterized by both short-term (e.g., month to
month) and long-term (over years) changes

ñ Dynamic nature of PA is especially critical in intervention
studies but may also be important in longer-term epi studies

ñ To properly analyze relationships of PA withindividual 
health outcomes it is crucial to carry out longitudinal studies



Longitudinal studies

ñ Defining feature: measurements are taken of the same
subjects repeatedly over time

ñ Primary goal: analysis of within-subject change in health
outcome and factors that influence this change over time

ñ Analyzing within-subject change removes extraneous
variation among subjects because they serve as their own
controls



Longitudinal studies: three effects

ñ Longitudinal studies generally lead to  ofthree effects
exposure on response:

  of the exposure for within-subject individual level  effect( )
a particular subject on this subject's mean outcome

  of the mean (over time) exposure between-subject effect
on the mean outcome in the population

  of the exposure on marginal population-average  effect( )
the contemporaneous mean outcome in the population



Statistical analysis: Mixed effects models

 Models include both ñ fixed random effectsand 
  are population level functions of covariates fixed effects
  subject-specific realizations of latent random effects are 

random variables that account for between-subject
heterogeneity and induce within-subject correlation structure

ñ Mixed effects models allow estimation of all three effects
but require specification of latent random effects



Mixed effects models

ñ : random effects are independent ofTraditional assumption
covariates leading to the same within- and between-subject
effects (in linear mixed models, the same three effects)

ñ Neuhaus & Kalbfleisch (1998) empirically demonstrated
that within- and between-subject effects could be different

  In econometrics, allowing for different within- andñ
between-subject effects has been common since 1970's

ñ : dependence of random effects on covariatesTheorem
always leads to three different effects



Simple example: linear mixed model (LMM)

ñ B ß C 3 Let  denote the exposure and outcome for person ,34 34
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ñ Consider a simple linear mixed effects regression model
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ñ ? Random effect  may be interpreted as representing effectsC3

of unknown subject-level covariates related to outcome

ñ ? If some of unknown covariates are confounders,  is C3 by
definition correlated with B34



Simple example: linear mixed model (LMM)

ñ Linear mixed effects regression model
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where all random variables are normally distributed
ñ Time-varying exposure may also be specified as LMM
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Linear mixed model

ñ I ? l Consider linear regression  so that C3 B3.
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  Linear mixed model

ñ Reparameterized LMM includes fixed effects of two
covariates and an independent random effect
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ñ Marginal effect is represented by the slope in linear
regression  and is given by the weighted averageI C lB 34 34

of within- and between-subject effects
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Mixed effects model with error-prone exposure

ñ B Consider the case when instead of true exposure  we34

observe B‡
34

ñ Theorem: in the naive model with error-prone exposure,
induced random effects are  correlated with exposurealways

ñ Proof (main idea):
 Bre-write naive model as true model where exposure  is34

replaced by B œ I B lB  ,  ,34 34
‡
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 show that induced random effects in the naive model are
always correlated with error-prone exposure B‡

34



Mixed effects models with error-prone exposure

ñ : in the naive model with error-prone exposure,To sum up
correlation of the induced random effects with exposure
leads to even if this is notthree different exposure effects, 
the case in the model for true exposure

ñ If ignored, the estimated exposure effect would be biased
due to two sources: measurement error and model
misspecification



Longitudinal measurement error model

ñ For continuous exposure on an appropriate scale,
nonclassical measurement error model may be specified as
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where
 exposure-related bias (often flattened slope)#B œ
 person-specific bias (random effect)? œB 3‡

 within-person random error/ œB 34‡

 vector of either subject-level or error-free covariatesD3 œ
with specified by design values



Effects of exposure measurement error

ñ Consider non-differentiality assumption regarding between
and within components of error-prone exposure, i.e.,
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ñ Regression slopes in the naive model representing three
different effects have multiplicative bias: " - "5 5 5
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Effects of exposure measurement error

ñ Impact of ME structure depends on the effect of interest:
 flattened slope  each of three effectsexaggerates
 subject-specific bias  change within-subject effect,does not
but  between-subject and marginal effectsattenuates
 within-subject random error  within-subject andattenuates
marginal effects, but  change between-subject effectdoes not



Interactive Diet and Activity Tracking in AARP ( )IDATA

ñ  is a validation study of 1100 participants (550 menIDATA
and 550 women), aged 50-74, with a variety of diet, PA, and
biomarker measurements over a course of one year

ñ Focus here: evaluation of ME structure in assessing daily
MET-hours (kcal/kg/day) with
 CHAMPS questionnaire over the previous month
 ACT24 web-based 24-hour recall
 ActiGraph GTX3 accelerometer (first 4 full days out of 7)



IDATA Study

ñ Time period in time-varying PA exposure: one month
ñ On the log scale, unbiased biomarker for within-period

MET-hours: doubly labeled water (DLW) divided by weight
ñ By design, participants had 6 ACT24, 2 ActiGraph,
 2 CHAMPS, 2 DLW, and 3 BMI measurements evenly

spread over one year



Measurement Error Model in IDATA

ñ 3 For person , denote true and measured log MET-hours in
time period  as and , respectively; with  consisting4 B B34 34

‡
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of baseline log BMI and age as subject level covariates, and
calendar months as design covariates

ñ Measurement error model is specified as
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Discussion (1)

ñ All 3 PA instruments involve flattened slope, person-
specific biases, and within-person random errors

ñ Flattening of slope is the largest in CHAMPS and smallest
in ActiGraph accelerometer

ñ Person-specific bias is the largest in ACT24 and smallest in
ActiGraph

ñ Within-person random errors are about 3 times larger in
ACT24 and 20% larger in CHAMPS compared toµ
ActiGraph accelerometer



Discussion (2)

ñ Bias due to ME is the smallest for estimating between-
person and largest for within-person effects in all 3
instruments

ñ Results show a definite advantage of using ActiGraph
accelerometer vs self-report ACT24 or CHAMPS for
estimating all three effects



Discussion (3)

ñ Repeat applications of instruments reduces within-person
random error, but ONLY if applied in the same time period
(here one month) and requires care:
 complete adjustment for within-person error leads to
substantial within-subject effectexaggeration of the  by a
factor equal to the inverse of flattened slope

 on the other hand, it seems to reduce bias of estimated
marginal effect in all 3 instruments


