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PA and Health Outcomes

¢ PA has been linked to many health outcomes (cancer,
diabetes, cardiovascular disease, obesity, quality of life)

e Epidemiologic studies usually concentrate on long-term
average (“usual) PA assessed by self-report questionnaires

e Recent intervention studies have been focusing on repeated
objective short-term PA measures using accelerometers

e Problem: measurement error in assessment of PA should be
taken Into account



PA and Longitudinal Studies

e PA Is characterized by both short-term (e.g., month to
month) and long-term (over years) changes

e Dynamic nature of PA is especially critical in intervention
studies but may also be important in longer-term epi studies

e To properly analyze individual relationships of PA with
health outcomes it Is crucial to carry out longitudinal studies



Longitudinal studies

e Defining feature: measurements are taken of the same
subjects repeatedly over time

e Primary goal: analysis of within-subject change in health
outcome and factors that influence this change over time

e Analyzing within-subject change removes extraneous
variation among subjects because they serve as their own
controls



Longitudinal studies: three effects

e Longitudinal studies generally lead to three effects of
exposure on response:

— within-subject (individual level) effect of the exposure for
a particular subject on this subject's mean outcome

— between-subject effect of the mean (over time) exposure
on the mean outcome in the population

— marginal (population-average) effect of the exposure on
the contemporaneous mean outcome in the population



Statistical analysis: Mixed effects models

e Models include both fixed and random effects
— fixed effects are population level functions of covariates

— random effects are subject-specific realizations of latent
random variables that account for between-subject
heterogeneity and induce within-subject correlation structure

e Mixed effects models allow estimation of all three effects
but require specification of latent random effects



Mixed effects models

¢ Traditional assumption: random effects are independent of
covariates leading to the same within- and between-subject
effects (in linear mixed models, the same three effects)

e Neuhaus & Kalbfleisch (1998) empirically demonstrated
that within- and between-subject effects could be different

¢ In econometrics, allowing for different within- and
between-subject effects has been common since 1970's

e Theorem: dependence of random effects on covariates
always leads to three different effects



Simple example: linear mixed model (LMM)

o Let z;;, y;; denote the exposure and outcome for person <,
r=1,...,n,timej=1,....m

e Consider a simple linear mixed effects regression model
Yij = E(ijlzij, uyi) + €yij = Bo + Boij + wyi + €y

e Random effect u,; may be Interpreted as representing effects
of unknown subject-level covariates related to outcome

o [f some of unknown covariates are confounders, w,; 1S by
definition correlated with x;;



Simple example: linear mixed model (LMM)

e Linear mixed effects regression model
Yij = E(Yij|@ij, wyi) + €yij = Bo + Baij + uyi + €
where all random variables are normally distributed

e Time-varying exposure may also be specified as LMM

Tij = B (xij|Upi) + Ozij = (0 + Ugi) + Ouij
i

where, in general, o, = cov(uy;, ;) # 0



Linear mixed model

e Consider linear regression E (u,;|u.;) S0 that
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Linear mixed model

e Reparameterized LMM includes fixed effects of two
covariates and an independent random effect

= By + Btz + Bwbzii + Myi + €yij

e Marginal effect is represented by the slope In linear
regression E(y;;|z;;) and is given by the weighted average
of within- and between-subject effects

Bu = %z Bw - 5+02 5z




Mixed effects model with error-prone exposure

e Consider the case when Instead of true exposure x;; we
observe 7,

e Theorem: in the naive model with error-prone exposure,
Induced random effects are always correlated with exposure

¢ Proof (main idea):

— re-write nalve model as true model where exposure x;; IS
replaced by z;; = E(x;j|x};) + bgl) + bg)

— show that induced random effects in the naive model are
always correlated with error-prone exposure x;;



Mixed effects models with error-prone exposure

e To sum up: in the naive model with error-prone exposure,
correlation of the induced random effects with exposure
leads to three different exposure effects, even if this Is not
the case In the model for true exposure

e IT Ignored, the estimated exposure effect would be biased
due to two sources: measurement error and model
misspecification



Longitudinal measurement error model

e For continuous exposure on an appropriate scale,
nonclassical measurement error model may be specified as

Tj) = Yo + Vaij + Vo Zi + Upri + €pvij
Tij = g, + Ory = Q0 + QL2Z; + Ugi + Ouij,
where
v, = exposure-related bias (often flattened slope)
uz+ = person-specific bias (random effect)
ex+i; = WIthin-person random error

z; = vector of either subject-level or error-free covariates
with specified by design values



Effects of exposure measurement error

e Consider non-differentiality assumption regarding between
and within components of error-prone exposure, I.e.,

F (yZ]’M$N 693@3'7 Mz s 6x;-kj7 zz) — F(yw‘:uxm 6%‘;’7 ZZ) 9
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e Regression slopes in the naive model representing three

different effects have multiplicative bias: E;; = \i. Ok,
k=W,B,M



Effects of exposure measurement error

e Impact of ME structure depends on the effect of interest:
— flattened slope exaggerates each of three effects

— subject-specific bias does not change within-subject effect,
but attenuates between-subject and marginal effects

— within-subject random error attenuates within-subject and
marginal effects, but does not change between-subject effect



Interactive Diet and Activity Tracking in AARP (IDATA)

e IDATA is a validation study of 1100 participants (550 men
and 550 women), aged 50-74, with a variety of diet, PA, and
biomarker measurements over a course of one year

e Focus here: evaluation of ME structure in assessing daily
MET-hours (kcal/kg/day) with

— CHAMPS questionnaire over the previous month
— ACT24 web-based 24-hour recall
— ActiGraph GTX3 accelerometer (first 4 full days out of 7)



IDATA Study

e Time period in time-varying PA exposure: one month

e On the log scale, unbiased biomarker for within-period
MET-hours: doubly labeled water (DLW) divided by weight

e By design, participants had 6 ACT24, 2 ActiGraph,

2 CHAMPS, 2 DLW, and 3 BMI measurements evenly
spread over one year




Measurement Error Model In IDATA

e For person ¢, denote true and measured log MET-hours In

time period j as x;;and z;;, respectively; with z;; consisting

of baseline log BMI and age as subject level covariates, and
calendar months as design covariates

e Measurement error model is specified as
Tii = Yo + VaTij + Vo Zi + Upri + €
Mij — ZCZ']' -+ Vij; Vz'j 1 .CUZ']'
where M denote log(DLW)



Parameter Estimates for MET —Hours in Women in IDATA
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Attenuation Factors for MET —Hours in Women in IDATA Study
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Adjusting Within —Person Effect of MET —Hours for Within —Person Error in Women
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Adjusting Marginal Effect of MET —Hours for Within —Person Error in Women
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Discussion (1)

e All 3 PA Instruments involve flattened slope, person-
specific biases, and within-person random errors

e Flattening of slope is the largest in CHAMPS and smallest
In ActiGraph accelerometer

e Person-specific bias is the largest in ACT24 and smallest in
ActiGraph

¢ \Within-person random errors are about 3 times larger in
ACT24 and ~ 20% larger in CHAMPS compared to
ActiGraph accelerometer



Discussion (2)

e Bias due to ME is the smallest for estimating between-
person and largest for within-person effects in all 3
Instruments

e Results show a definite advantage of using ActiGraph
accelerometer vs self-report ACT24 or CHAMPS for
estimating all three effects



Discussion (3)

e Repeat applications of instruments reduces within-person
random error, but ONLY if applied in the same time period
(here one month) and requires care:

— complete adjustment for within-person error leads to
substantial exaggeration of the within-subject effect by a
factor equal to the inverse of flattened slope

— on the other hand, It seems to reduce bias of estimated
marginal effect in all 3 instruments



