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Outline 

• WHY we Need More (and Better) Simulations? 

• General Recommendations from STRATOS Simulation Panel 

• Reproducilibility of Simulations 
 

• Some “Specialized” issues: 
 Making Design & Assumptions Clinically Relevant/Plausible 

 Assessing Bias/Variance Trade-off 

 Digging deeper into results (Beyond “Average” performance) 

 Considering Unfavorable Assumptions 

 Watching for a Tip of the  Iceberg 

 

• Practical Conclusions 
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Why we need more (and Better) 
Simulations? 

• STRATOS’ overarching goal: 
      provide Evidence-based Guidance re: choice of method(s) to deal with 

specific analytical challenges of observational studies 
 
• Yet, solid Evidence is often lacking, because:   

 Proliferation of new, ever more sophisticated/complex methods 

 Alternative methods address similar issues with different techniques 

 Difficult to analytically prove properties of complex methods  

 Relative Performance of alternative methods – and their Validity – may depend 
on the data structure/quantity/quality 

• Thus, End-Users are often at loss re:  
 Will this method work for my data? 

 Which of the alternative methods I should use? etc.  

 
• These challenges can be addressed by well designed, executed and 

interpreted Simulation studies    
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Limitations of most published 
Simulation studies 

• Design and scope of simulations reported in 
recent statistical papers often raise concerns 
(arbitrary assumptions, univariate…) 

• E.g. developers of the new methods often 
attempt to demonstrate its ‘superiority’ over 
the existing alternatives, but consider only a 
limited range of ‘favorable’ scenarios, 

    raising concerns about specific  

   “Publication Bias”  
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Recent Progress: 
ADEMP framework  

• Several ‘generic’ issues related to design, 
conduct and reporting of simulations comparing 
alternative statistical methods are addressed by 
Morris, White & Crowther [Statistics in Medicine 
2019. 38: 2074-2102], who propose very useful: 

    ADEMP reporting framework (Aims; Data-
generation; Estimands; Methods & Performance 
measures). 

Adherence to ADEMP rules will enhance the 
Validity & Transparency of statistical simulations  
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General Recommendations from the  
STRATOS Simulation Panel 

• (Based on the recent Letter: 

        Boulesteix, Binder, Abrahamowicz & Sauerbrei [Biometrical J 2018]): 

 The overarching Goal of the Simulation Panel is to advocate more wide-spread use of neutral 
(unbiased) and ‘realistic’ comparison studies evaluating the performance of existing and new 
statistical methods using (mostly) Simulated or Real-life data 

• Similar to the guidelines for RCT’s [e.g. CONSORT] evaluating new treatments, statistical 
simulations should meet several criteria, and address important design/reporting issues: 

(i) How to simulate data in a Realistic way, inspired from relevant real datasets?  

(ii) How to ensure the Reproducibility and Transparency of the methods used for Data 
Generation and Analyses? 

(iii) What are typical sources of potential Biases and how can they be avoided?  

(iv) How can the results be Interpreted, without the risk of over-interpretation?  

(v) What Parameters & Assumptions should be Varied across simulated scenarios?  

(vi) What range of Sample Sizes should be considered?  

(vii) Which “Competing Methods” should be considered? 

(viii) Etc. ...  
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Essential criteria for “Informative Simulations”: 

Reproducibility / Availability of the Software  

• Simulation studies should be fully reproducible, i.e. all 
necessary information should be provided 

 (assumptions, relevant parameters, data generation 
algorithms, analysis methods, criteria to assess/summarize 
the results)  

• Space restrictions no longer an excuse, as this information 
can go to the Supplementary Materials 

• Providing scripts (with clear instructions for the users) e.g. on  
github (or even R packages) that allow to re-do simulations 
ensures full Transparency and Reproducibility.  
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(rare) Example of Realistic, Complex Simulations  
[H. Binder, W. Sauerbrei, P. Royston. Stat Med 2013] 

• 3 “Competing Goal: 
      Compare flexible model building approaches for selection of (i) important 

variables and (ii) functional forms (for continuous variables) 
      (in exploratory multivariable linear regression analyses) 

• Methods” compared: 
– Multivariable fractional polynomial (MFP) 

– Restricted cubic splines (RCS) 

– Penalized splines (PS) 

• Design of simulation study: 

– Based on Realistic biomedical data  

     (Distribution of Variables & their Correlations based on the  

     Rotterdam Breast Cancer study) 

     15 variables (mix continuous/binary), with complex correlation 
structure (Figure 1 on the next slide) 

– Alternative Sample Sizes (N= 200, 500, or 1,000) 
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Figure 1. Simulation design: correlation structure of the underlying 15 variables (circles/squares) is indicated by arrows, 
where the numbers indicate the correlation coefficients. The formulae for obtaining the covariates from the underlying 
variables are adjacent to the circles/squares. [] indicates that the non-integer part of the argument is removed, and I() is 
the indicator function, taking the value 1 if its argument is true and 0 otherwise. Continuous constructed covariates are 
indicated by circles, and categorical covariates by rectangles. If a covariate has an effect on the response, the circle or 
rectangle is shaded grey. Note that some of the underlying variables correspond to several covariates or model 
components, for example, variable 4 corresponds to x4a and x4b, but only x4a has a non-zero effect. 
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Importance of comparing  the  
Bias/Variance trade-off (via RMSE) 

• Many recent, complex methods aim at reducing different Biases 

• These methods typically use additional information and/or often involve 
estimating additional ‘auxiliary parameters or meta-parameters (often using a 2-
step estimation) (Examples: Instrumental Variables (IV), MSM’s with IPT weights, 
Fractional Polynomials, Missing Cause, SIMEX, Net Survival...)  

• This tends to Inflate the Variance of the estimates 

• Thus, it is Essential to report both the SD’s**  and the RMSE of the estimates 
(Lower RMSE = better Bias/Variance trade-off)  

• Yet, relative RMSE’s of alternative methods may depend strongly on some design 
parameters (see Next Slide, which shows how Instrumental Variables (IV) ability 
to reduce Unmeasured Confounding Bias depends on the Instrument’s Strength) 

      [Ionescu-Ittu et al, Pharmacoepi & Drug Safety (PDS) 2009] 
  
** Also: Hessian-based “analytical” Variance estimates are NOT accurate for 2-stage 
estimators and simulations can help assess the resulting under-estimation of the 
variance   
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Bias, SD and RMSE of IV-corrected vs Conventional  
estimates in presence of Unmeasured Confounding  
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SIMEX correction for Measurements Errors in Outcome: 
Bias/Variance Trade-off (relative RMSE) depends on N 

-20%

-15%

-10%

-5%

0%

3.000 6.000 10.000

B
ia

s 

N 

Bias (%) 

0

0,05

0,1

0,15

0,2

3.000 6.000 10.000

SD
 

N 

SD 

Conventional SIMEX

0

0,05

0,1

0,15

0,2

3.000 6.000 10.000

R
M

SE
 

N 

RMSE 

Conventional SIMEX

Here, Bias/Variance trade-off (RMSE 
ratio) of SIMEX vs Conventional 
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“Digging deeper” into Simulation Results:  
Beyond the Average performance 

• Results for SIMEX vs Conventional (previous Slide) 

• Interpretation: lower “mean” error (RMSE) does NOT imply 
one method always better than another (e.g. SIMEX “wins” in 
34% of samples for N=3K even if RMSE higher by ~ 35%)  

• For N=6K RMSE’s equal but SIMEX wins in 66% of samples  
Variance Inflated by ‘outliers’  hint to improve the method?   

 

  

 

N RMSE 
Convent. 

RMSE 
SIMEX 

% samples 
SIMEX  
Closer to 
True β 

  3,000 0.14 < 0.19 34% 

  6,000 0.14 = 0.14 66% 

10,000 0.14 > 0.12 72% 14 



 
Flexible Weighted Cumulative Exposure (WCE) modeling of 
Cumulative effects of Time-Varying exposures on hazard 

 

u= current time (when Risk is being assessed) 
X(t)= exposure intensity (dose) at time t(t≤u) 
WCE(u)= Weighted Cumulative Effect of the Past Exposures on hazard at time u, 
defined as a Weighted Sum of Past Exposures  
u-t= time elapsed since exposure X(t) 
w(u-t)= estimated Weight (Relative Importance) assigned to exposure X(t) as a 
               function of Time-since-Exposure (u-t) ** 
 
** weight function w(u-t) is modeled using Cubic Splines  
 
>> Next Slide evaluates the Accuracy of the ‘individual’ Weight function estimates (from 
100 replicates) in 6 alternative simulated scenarios  
 
[Sylvestre & Abrahamowicz, Statistics in Medicine 2009] 
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Digging deeper: 100 individual w(u-t) estimates (black) 
vs their Mean (white) for 6 scenarios (~250 events)  

From Sylvestre and Abrahamowicz (2009,  Statistics in Medicine, Figure 1)  16 



Considering Unfavorable Assumptions (2 Last Panels): 
 Huge Bias if w(u-t) wrongly constrained to decay to null  

From Sylvestre and Abrahamowicz (2009,  Statistics in Medicine, Figure 2)  17 



“Tip of the Iceberg?”: exploring RARE but DISASTROUS 

Results (MSM Cox in [Xiao, Moodie & Abrahamowicz, Epi Methods 2013])  

• Original Reasons for “Alert” (re Cox Marginal Structural Models (MSM)): 
      In simulations, Cox MSM-based Hazard Ratios (HR), with stabilized IPT 

weights, were (on average) almost un-biased but had surprisingly high 
variance and, thus, worse RMSE than conventional Cox HR’s  

• This triggered Additional Exploration of individual estimates, revealing that 
       Variance Inflation was due to a few samples with very biased estimates  

• In-deep assessment of these “outlying’ simulated samples showed that 
each contained a single ‘mis-fit observation’ with a Huge IPT weight 
(IPTW>500) 

•  Consistent with Survival Analysis theory, the impact of high IPTW’s was 
especially ‘dramatic’ if they were associated with an Event (rather than a 
censored observation)  

 
• To better understand the issue, we undertook Bootstrap Stability 

investigation of these outlying samples (based on 100 resamples) 
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Bootstrap stability analyses for 2 “extreme” samples: 
Huge Bias IFF subject with extreme IPTW & event (Y=1) included (dark dots)!  

Figure 1. Investigation of the impact of the extreme weights on the IPTW estimates of A(j) using 
resampling. Dark dots indicate that the subject with the highest weight in the original sample was 
included in a resample. The solid line represents the estimated effect of A(j) in the original sample and 
the dashed line represents the true effect. The treatment (A), the event (Y), and the weight for the 
observation with the highest weight are indicated in the title of each panel. 
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Selected “Recommendations” 

 

In Preliminary Simulations: 

 Test Data-Generation procedures using “Ideal Case” scenario with a priori 
“Known” (Theory-based) results 

 Use “Bracketing” (1 or 2 parameters at a time) to Identify “crucial 
parameters’ that need to be Varied in “Main Sims”  

In “Main Simulations”: 

 Consider Alternative (Plausible) Assumptions (about Data Structure/True 
model etc.) including those where: 

     (a) assumptions “favor” different among the “Competing Methods” ** 
      [** IF you propose a “new” Complex Method (e.g. Non-linear estimate) 

include scenario where “true model’ is Simple (e.g. Linear effect), so 
“Complexity” is NOT necessary ...]   

     (b1) your Proposed Method is expected to Fail,  

     and/or (b2) None of the Methods considered is Expected “to work” 
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Selected “Recommendations” 
(continued ...) 

In “Main Simulations”: 

 Assess Not only Bias but also Variance & Mean Squared Error  

    (Bias/Variance trade-off may vary dramatically with N !) 

 If your estimands are Functions, show Not only the Mean Estimate but 
also the estimates from Individual Simulated Samples  

 Do NOT Ignore rare but Strange results (Tip of the Iceberg?) 

 If relevant, Design New Post-hoc Simulations to explore issues revealed by 
Unexpected results of pre-planned simulations 

 Avoid “Publication Bias” & Report Results of All Simulations you’ve 
performed (use Supplementary Materials if needed) 
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