Reproducibility of omics research: Shared responsibility and consequences of ignorance

> Open Science Center Ludwig-Maximilians-Universität München München, Deutschland

Lisa M McShane, PhD Acting Associate Director Division of Cancer Treatment and Diagnosis Biometric Research Program

December 5, 2018

The views expressed in this presentation are my own and do not necessarily represent the views or policies of the U.S. National Cancer Institute.

Translation from omics discoveries to clinically useful omics-based tests to guide clinical care

"Omics" is a term encompassing multiple molecular disciplines, which involve the characterization of global sets of biological molecules such as DNAs, RNAs, proteins, and metabolites."

NATIONAL CANCER INST

02

Overall Survival (months)

High-throughput omics assays ("big data")

Norway/Stanford data set p<0.01 **"Omics** predictor"

Apply computational methods to derive models, risk scores, classifiers

Skepticism, disappointment, and scandal

OvaSure diagnostic test for ovarian cancer

MISSING THE

Why is it so hard to find a test to predict cancer?

BY LIZZIE BUCHEN

1 3 March, two studies appeared online

women - to ask whether these seemingly that offered 19 pages of gloomy reading breakthrough biomarkers were better at iden-

contrast, detected 63%.) Mor's panel already had a tortured history. A primary research for anyone interested in cancer. They tifying women with early ovarian cancer than paper behind it had been criticized by other

Lizzie Buchen, Nature, v. 471, March 24, 2011

Genomic predictors (chemo-sensitivity & prognosis) developed by Anil Potti at **Duke University**

Duke University allowed a controversial set of clinical trials to continue despite serious concerns about the validity of the data on which they were based.

ETHICS **Cancer trial errors revealed**

University officials admit data withheld from review panel before misconduct charges arose.

BY EUGENIE SAMUEL REICH

t was a weekend that Michael Cuffe, vice-president for medical affairs at Duke University in Durham, North Carolina, says he will never forget. It began on 16 July 2010, when Cuffe learned of a damning revelation in The Cancer Letter, a Washington DC-based publication with a reputation for probing controversial topics in cancer research. A story in that day's issue alleged that Anil Potti, a cancer geneticist whose data had been used to design three clinical trials then under way at Duke. had lied on multiple federal grant applications,

them when a review panel seemed to validate Potti's method. The allegations that Potti, who worked at Duke's Institute for Genome Sciences and Policy (ISGP), had padded his CV changed everything. "When it comes to light that someone may have been less than honest in one aspect of their professional life, one begins to wonder whether they have Originally commissioned to investigate Duke's been less than honest in another aspect," says Kornbluth. That weekend, she and Cuffe suspended the trials once again, and initiated a misconduct investigation that is still ongoing. Potti, who could not be reached for comment.

Yet Cuffe and Kornbluth had decided to restart Freedom of Information Act, Kornbluth and Cuffe have offered their account of the mistakes that led the trials to be restarted even after they learned of potential flaws in the underlying data. The affair will have an impact beyond Duke, as the Institute of Medicine, part of the US National Academies in Washington DC, begins to examine research on genome-based patient testing. controversial trials, the institute's US\$687,000 study is now expected to focus on providing broader recommendations for the design of clinical trials that similarly use genomic data from individual patients to tailor therapy.

Eugenie Samuel Reich, Nature, v. 469, January 13, 2011

Duke scandal prompts Institute of Medicine study to examine field of translational omics

NEWS&ANALYSIS Jocelyn Kaiser

CLINICAL MEDICINE Science, v. 335, March 30, 2012

Biomarker Tests Need Closer Scrutiny, IOM Concludes

"There are a lot of lessons here that surely apply to other places." —GILBERT S. OMENN, UNIVERSITY OF MICHIGAN, ANN ARBOR

http://www.iom.edu/Reports/2012/Evolution-of-Translational-Omics.aspx

"Plane crash investigation" approach

To improve the integrity and quality of a system we must understand how it can fail

- Some examples are from research misconduct scandal involving omics research conducted by Anil Potti and colleagues at Duke University.
 - All information I cite for these examples is in the public domain.
- Other examples I have encountered over the last few years through collaborations, reviewing protocols and journal submissions, and as a reader of published papers reporting omics studies.
 - It is not my intent to imply that research misconduct was involved in these other examples.

Understanding sources of irreproducible research

Design considerations Patient characteristics, potential confounding

- Example: "Differential exoprotease activities confer tumor-specific serum peptidome patterns"
 - 100% sensitive and specific for prostate cancer
 - Patient characteristics:
 - Cancer cases: mean age 67 yrs, 100% male
 - Controls: mean age 35 yrs, 58% women
 - Journal correspondence: Authors cite unpublished data that patterns not associated with age or sex. Is that convincing?

Design considerations Specimen source, potential confounding

- Example: "Highly-accurate metabolomic detection of early-stage ovarian cancer"
- High performance mass spectrometry was employed to interrogate the serum metabolome of early-stage ovarian cancer (OC) patients and age-matched control women
- Linear support vector machine (SVM) model of sixteen diagnostic metabolites
- Reported 100% accuracy in the study patient cohort

Source of serum sample (clinical site)	Cancer	Normal (free of cancer)
NS	11	27
С	11	0
FC	24	0

Data generation Specimen or data handling errors

Does anything look odd?

Pairwise correlations between gene expression profiles

ID1/ID2	1063	2094	3756	3781	4941	5725	6941	7461
1063	1	0.85	0.87	0.87	0.89	0.88	0.87	0.85
2094		1	0.88	0.86	0.85	0.87	0.88	0.87
3756			1	0.89	0.87	0.86	0.89	0.87
3781				1	0.88	0.89	0.88	0.86
4941					1	0.99	0.89	0.87
5725						1	0.87	0.89
6941							1	0.89
7461								1

(Disguised real example)

Data generation Data handling errors

Data Set 1

ID	X1	X2	X3	X4	X5
2094	1	48	75	781	57
1063	1	34	36	686	42
5221	1	21	51	592	32
9089	1	79	66	328	52
3781	1	37	49	903	49

(Disguised real example)

Anything suspicious?

Data Set 2 = Data Set 1 + additional assay runs

ID	X1	X2	X3	X4	X5
1063	1	48	781	75	57
2094	1	34	686	36	42
3781	1	21	592	51	32
5221	1	79	328	66	52
9089	1	37	903	49	49
3756	2	291	54	569	48
4941	2	428	61	747	58
5725	2	644	42	581	63
5894	2	503	83	470	50
8503	2	743	36	655	44

Data generation Assay artifacts & batch effects

 Impact of changes in assay procedures, reagents, equipment, or technician during predictor development

Dramatic effect of change in RNA extraction procedure & reagents on tumor gene expression microarray profiles Extraction method 1 Extraction method 2

116 genes included in a genomic predictor of treatment response

(Shown with permission from an NIH grantee)

215 tumor samples

Data generation Assay artifacts & batch effects

Example: 2nd generation sequence data from the 1000 Genomes Project. Standardized coverage data represented. Same facility, same platform.

Horizontal lines divide by date.

Data generation Impact of changes in assay

MINDACT Trial

Cardoso F et al., *N Engl J Med* 2016;375:717-729

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 25, 2016

VOL. 375 NO. 8

70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer

F. Cardoso, L.J. van't Veer, J. Bogaerts, L. Slaets, G. Viale, S. Delaloge, J.-Y. Pierga, E. Brain, S. Causeret, M. DeLorenzi, A.M. Glas, V. Golfinopoulos, T. Goulioti, S. Knox, E. Matos, B. Meulemans, P.A. Neijenhuis, U. Nitz, R. Passalacqua, P. Ravdin, I.T. Rubio, M. Saghatchian, T.J. Smilde, C. Sotiriou, L. Stork, C. Straehle, G. Thornas, A.M. Thompson, J.M. van der Hoeven, P. Vuylsteke, R. Bernards, K. Tryfonidis, E. Rutgers, and M. Piccart, for the MINDACT Investigators*

"A change in the RNA-extraction solution that was used in the calculation of the 70-gene signature (a change that was not communicated by the manufacturer) caused a temporary shift in the risk calculation from May 24, 2009, to January 30, 2010, at which time the issue was discovered and rectified . . .

Because of this shift, **162** patients who had been identified as being at high genomic risk were subsequently identified as being at low genomic risk with the use of the correct . . . The clinical effect of this risk revision was that an additional **28** patients received chemotherapy before the results were corrected, although no patient was undertreated."

Massive data corruption

Drugs **Baggerly &** Coombes 2009 Annals of Applied **Statistics** 1-00 cel Lh Cell lines Information source

Each *block* of columns = one drug (reported across different publications)

Each row = one cell line

Within each block of columns, a given row should be either all blue (sensitive) or all red (resistant)

Several clinical trials using the Potti genomic predictors based on these data to select patient therapy were launched at Duke.

By the time of data analysis it may already be too late. . .

Data are worthless and potentially dangerous if there are major errors or "hardwired" biases (e.g., due to confounding factors).

Recommendations: Design and data generation

- Need better training of scientists and statisticians in basic study design principles.
- Statisticians and others with experimental design expertise need to be more involved in the design of research projects and *truly engaged* in the research.
- Need to ask basic questions about potential for bias and confounding (including batch effects).
- Patient characteristics and specimen sources and handling need to be fully described.

Recommendations: Design and data generation (cont.)

- Need education on proper data management practices, including locked databases for prospective clinical studies.
- Need reliable systems for data management and documentation of data provenance.
- Specifically designate qualified individuals responsible for data management.

Data analysis Ability to run statistical software ≠ statistical expertise

Are You My Statistician?

Data analysis Appropriateness of cited statistical methods

"The docetaxel sensitivity model developed from the NCI-60 panel again predicted sensitivity in this independent dataset, also with an accuracy exceeding 80% (P<0.001, **log-rank test**; Fig. 1c, right)." **???** (Potti et al, *Nature Medicine* 2006)

Huh?

Data analysis Multiple testing problems

- Multiple explanatory variables
- Multiple endpoints
- Multiple subgroups
- Multiple cutpoints applied to continuous variables
- Multiple models with multiple variables

Number of independent tests (α = 0.05 per test)	Probability observe ≥ 1 statistically significant (p<0.05) result
1	0.05
2	0.10
3	0.14
4	0.19
5	0.23
6	0.26
7	0.30
8	0.34
9	0.37
10	0.40

Data analysis

- Distinguish exploratory analyses from confirmatory
- Don't force-fit clinical questions into studies not designed to sensibly address them
 - "An answer in search of a question"
- Have a coherent plan to move from biological discoveries to clinical applications
 - Plan for development/training and validation phases

Data analysis Key considerations in model development

- Quality of data (clinical & omics) used to develop and validate predictor models (might not be "clinical trials grade" data)
- Appropriate statistical approaches for model development and performance assessment
- Appropriate "validation"
 - Define clinical context and use
 - Patient population
 - Clinical use prognostic, predictive (treatment selection), etc.
 - "Locked down" test
 - Pre-specified evaluation criteria (not just a significant p-value) National cancer institute

Data analysis Common pitfalls in omics model development

- A statistical model is OVER-FIT when it describes random error or noise instead of the true underlying relationship
 - Excessively complex (too many parameters or predictor variables)
 - Will have poor predictive performance on independent data set
 - Naively fit omics predictors will always be overfit
- RE-SUBSTITUTION is the naïve evaluation of model performance by "plugging in" same data used to build it
 - Other more subtle forms of re-substitution (combining training & test, with covariates, comparative, partial)

(J Biopharm Statistics 2016;26(6):1098-1110)

Data analysis Avoid pitfall of model over-fitting

Biomarker

- Evaluation of a model's fit by data re-substitution will suggest fit is perfect
- In high dimensions (e.g., omics data), naively fit models are almost always over-fit and such models will rarely validate on an independent data set 24

Data analysis Avoid various forms of resubstitution

- Full re-substitution (plug in exactly same data used to build predictor)
- Combining training and test sets or comparing to a re-substitution estimate
- Resubstitution with covariate adjustment
- Partial resubstitution (selection of informative variables on *full* data set with cross-validation post-selection)

Simon et al, *J Natl Cancer Inst* 2003;95:14-18 Subramanian & Simon, *J Natl Cancer Inst* 2010;102:464-474 Simon & Freidlin, [Correspondence] *J Natl Cancer Inst* 2012;103(5):445 Subramanian & Simon, *Contemporary Clinical Trials* 2013;36:636–641 Sachs & McShane, *J Biopharm Statistics* 2016;26(6):1098-1110

Data analysis Avoid re-substitution

"A 15-gene signature [for lung cancer] separated OBS patients [no chemotherapy after surgery] into high-risk and low-risk subgroups with significantly different survival (hazard ratio [HR], 15.02; 95% CI, 5.12 to 44.04; *P* <.001."

RE-SUBSTITUTION!

(J Clin Oncol 2010;28:4417-4424)

If this large separation in survival curves was real, the signature would have clinical utility. Patients designated as low risk could confidently avoid toxic chemotherapy.

Data analysis: What was validated?

... prognostic effect *[of 15-gene* signature] was VALIDATED consistently in four separate microarray data sets (total 356

stage IB to II

adjuvant

treatment)."

patients without

(J Clin Oncol 2010;28:4417-4424)

Endpoint: Disease-specific survival (DSS) \rightarrow Overall survival (OS) Timescale: 0 to 9 years \rightarrow 0 to 60 months (5 years) HR: $15.02 \rightarrow \approx 2-3$ 5-yr DSS $\approx 90\% \rightarrow$ 5-yr OS < 80% Mixture of disease stages? Adjustment for standard covariates?

Data analysis Use internal validation during model development

RE-SUBSTITUTION

CROSS-VALIDATION

Original Kaplan-Meier curves (DSS) showing prognostic ability of 15-gene signature in OBS arm, using re-substitution (J Clin Oncol 2010;28:4417-4424)

Reproduced (approx.) Kaplan-Meier curves (DSS) showing prognostic ability of 15-gene signature in OBS arm, using re-substitution (A) and cross-validation (B)

(J Biopharm Statistics 2016;26(6):1098-1110)

Data analysis Avoid combining training & test sets

Multivariable Model for OS (Training and Test sets combined)

Variable	HR	95% CI	Ρ
Genomic score	2.43	1.94 - 3.06	< 0.001
Stand. molec. factor 1	1.77	1.41 – 2.22	< 0.001
Stand. molec. factor 2	0.66	0.48 - 0.93	0.02
Age group, ≥ 60 yrs vs < 60 yrs	2.22	1.76 – 2.79	< 0.001

- Combining Training data (used to develop genomic score) with Test data destroys the validation and interpretability of the adjusted effects
- Resubstitution with covariate adjustment: Nowhere in the paper was a multivariable analysis based solely on the Test set presented.

Data analysis Avoid partial re-substitution

- Example: "Metabolomic detection of early-stage ovarian cancer"
- 100% accuracy in cohort (46 early stage (I/II) serous epithelial ovarian cancer (EOC) patients and 49 age-matched normal healthy controls)
- "Using all 255 metabolic features, a first SVM model was generated (accuracy 62%; specificity 57%; sensitivity 67%). Since SVM models built upon large datasets typically contain uninformative features . . . We employedRFE method to select features that distinguished the early-staged EOC samples from controls with optimal accuracy. **100% accuracy . . .** obtained with . . . **16 features. . . accuracy of these** 16 metabolites was independently validated by orthogonal partial least squares-discriminant analysis (oPLS-DA) using a variety of crossvalidation approaches" (details in Supplement)

Requirements for rigorous predictor validation

- Predictor must be completely LOCKED DOWN and must be a PRE-SPECIFIED PERFORMANCE METRIC. The lockdown includes *all steps* in the data pre-processing and prediction algorithm (including computer code).
- Ideally, INDEPENDENT VALIDATION DATA generated from specimens collected at a different time, or in a different place, and according to the pre-specified collection protocol.
- Assays for the validation specimen set should be run at a different time or in a different laboratory according to the PRE-SPECIFIED ASSAY protocol (including quality rejection criteria).

Requirements for rigorous predictor validation (cont.)

- Individuals who developed the predictor must remain completely BLINDED to the validation data.
- The validation DATA SHOULD NOT BE CHANGED and DATA VALUES SHOULD NOT BE SELECTIVELY ELIMINATED after observing the performance of the predictor.
- PREDICTOR SHOULD NOT BE ADJUSTED (including cutpoints) after its performance has been observed on any part of the validation data. Otherwise, the validation is compromised and a new validation may be required.

Recommendations: Data analysis

- Individuals with adequate statistical and bioinformatics expertise should be engaged in the research
- Journals should ensure that submitted manuscripts receive adequate statistical and bioinformatics review

Results reporting and interpretation

- Example: "Diagnostic markers for early detection of ovarian cancer"
- Six proteins are used to compare the plasma from ovarian cancer cases and healthy controls.
- Claim: 95.3% sensitivity and 99.4% specificity
- Patient characteristics:
 - Cancer cases: from high risk cancer, with masses
 - Controls: from screening clinic
- Markers include "stress" proteins that could differ in compared groups. Does that explain discrimination ability?

Results reporting and interpretation

 "Diagnostic markers for early detection of ovarian cancer" (continued)

To the Editors: <Authors> "claim the ability to detect ovarian cancer early and with **95.3% sensitivity and 99.4% specificity**. Several **serious methodologic issues** lead us to conclude that these figures are **greatly exaggerated**. The training set specimens, derived from one cohort, were used to fit several classifiers, and the test set specimens. . .were used to estimate their performance. The accuracy reported in their conclusion, however, was determined from the **combined data and from the classifier that did best in** the test set. This violates fundamental principles of statistical analysis, . . . Had they properly . . . they would have had to report a lower sensitivity of either 84% or 88% at lower 95% specificity. The analysis they chose to highlight is inappropriate and misleading."

Results reporting and interpretation

 "Diagnostic markers for early detection of ovarian cancer" (continued)

To the Editors: "The published report is noteworthy for the performance characteristics . . . based on the combined training and test sets, all ovarian cancers combined: sensitivity, 95.3%; specificity, 99.4%; positive predictive value (PPV), 99.3%; and negative predictive value, 99.2%. However, the PPV estimate of 99.3% . . . based on a prevalence of ovarian cancer near 50%. The prevalence of ovarian cancer in any screened population will be much smaller than 50%.... correction ... assumed that the prevalence of ovarian cancer in the screened population was 1 of 2,500 (0.04%) and recalculated the PPV to be only 6.5%. only 1 in 15 women with a positive test result will, in fact, have ovarian cancer

Given that this assay is currently **being marketed** to health care providers and consumers as a validated ovarian cancer screening test, this **difference is not academic**."

Recommendations: Results reporting and interpretation

- The term "validation" should not be used unless accompanied by appropriate explanation of what is being validated
- Approaches used to adhere to requirements for validations should be described (e.g., was blinding used)

Results dissemination

Once a "desirable" (but wrong) result has been obtained by a flawed analysis approach or data dredging, it's hard to pull it back.

Results dissemination

Studies focus

personalized

on the

care of

patients

"...we can now predict with high accuracy which patients may benefit most from chemotherapy."

Phil Febbo, MD, and David Harpole, MD, are pictured in front of an enlarged "heat map" of the genomic profiles of lung cancer patients.

Genomic Clinical Trials

Physician-researchers from the Duke Comprehensive Cancer Center and Duke's Institute for Genome Sciences & Policy are leading two new national clinical trials that use a patient's cancer genome to determine what treatment will likely be the most successful for that patient. One study will test whether chemotherapies already FDA approved

for late-stage lung cancer are effective for certain early-stage lung cancer patients, too. The other study will use a genomic test developed at Duke to compare the effectiveness of an FDA-approved therapy with an investigational therapy for men with advanced prostate cancer. "It's difficult for physicians to know which patients will benefit from which treatments," explains Duke surgeon David Harpole, MD, lead investigator of the trial for early-stage lung cancer patients. "Using a genomic signature from a patient's lung cancer, we can now predict with high accuracy which patients

may benefit most from chemotherapy." Genome is defined as the collection of a person's genetic information from a person or his or her tumor. Harpole and his colleagues

across the country will accrue

"...we can now predict with high accuracy which patients may benefit most from chemotherapy."

David Harpole, MD

1500 early-stage lung cancer patients who are being treated at major medical centers in the United States. The trial is one of the largest trials ever conducted for early-stage lung cancer patients and the first to use genomics to determine which patients will likely benefit from receiving chemotherapy.

"Forty percent of patients with early-stage lung cancer die within five years," says Harpole. "It's unacceptable that so many people die, even when the disease is caught early."

continued on page 3

Potti genomic predictors generated advertising, patent applications, MIN diagnostics company start-ups, consulting arrangements

What accuracy measure? Sensitivity? PPV??? 75%? 80%?

> Some predictors were developed on cell lines or different tumor types.

Results dissemination Dozens of papers from Potti group published in top journals

Nature Medicine 2006

Genomic signatures to guide the use of chemotherapeutics

Anil Potti^{1,2}, Holly K Dressman^{1,3}, Andrea Bild^{1,3}, Richard F Riedel^{1,2}, Gina Chan⁴, Robyn Sayer⁴, Janiel Cragun⁴, Hope Cottrill⁴, Michael J Kelley², Rebecca Petersen⁵, David Harpole⁵, Jeffrey Marks⁵, Andrew Berchuck^{1,6}, Geoffrey S Ginsburg^{1,2}, Phillip Febbo^{1–3}, Johnathan Lancaster⁴ & Joseph R Nevin^{1–3}

The NEW ENGLAND JOURNAL of MEDICINE

NEJM 2006

ORIGINAL ARTICLE

A Genomic Strategy to Refine Prognosis in Early-Stage Non–Small-Cell Lung Cancer

Anil Potti, M.D., Sayan Mukherjee, Ph.D., Rebecca Petersen, M.D., Holly K. Dressman, Ph.D., Andrea Bild, Ph.D., Jason Koontz, M.D., Robert Kratzke, M.D., Mark A. Watson, M.D., Ph.D., Michael Kelley, M.D., Geoffrey S. Ginsburg, M.D., Ph.D., Mike West, Ph.D., David H. Harpole, Jr., M.D., and Joseph R. Nevins, Ph.D.

VOLUME 25 · NUMBER 28 · OCTOBER 1 2007

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

J Clin Oncol 2007

Pharmacogenomic Strategies Provid to the Treatment of Cisplatin-Resist

Advanced Cancer

David S. Hsu, Bala S. Balakumaran, Chaitanya R. Acharya, Van, Katherine Garman, Carey Anders, Richard F. Riedel, Johnathan I Joseph R. Nevins, Phillip G. Febbo, and Anil Potti VOLUME 25 · NUMBER 5 · FEBRUARY 10 2007

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

J Clin Oncol 2007

An Integrated Genomic-Based Approach to Individualized Treatment of Patients With Advanced-Stage Ovarian Cancer

Holly K. Dressman, Andrew Berchuck, Gina Chan, Jun Zhai, Andrea Bild, Robyn Sayer, Janiel Cragun, Jennifer Clarke, Regina S. Whitaker, LiHua Li, Jonathan Gray, Jeffrey Marks, Geoffrey S. Ginsburg, Anil Potti, Mike West, Joseph R. Nevins, and Johnathan M. Lancaster

Recommendations: Dissemination

- As a requirement for access to specimens and funding for omics research, there should be a commitment to report results completely and transparently, *regardless* of findings
- Data and computer code should be made available for others to examine

Accountability

<u>Jan. 27, 2011</u>: After initiation of a research misconduct investigation, the Duke vice-chancellor for clinical research and the head of the Institute for Genome Science and Policy jointly send a letter to all co-authors of Potti:

- "In keeping with our institutional commitment and mandate to maintain public trust, . . . assure that you can identify the person or persons responsible for the data management, statistical analysis, and interpretation of the results.
- Based on the requirements for authorship, we ask you to attest that you are confident that these elements of the manuscript are appropriate, accurate, and free of improper manipulation.

If you cannot do so, we will work with you to reach the point of either assuring that the paper and its results are reasonable or retracting the article. . . In order to ensure that we as an institution as well as others in the scientific community can have confidence in the integrity of these papers, we will select a small number at random for a detailed review."

Dozens of Potti papers fully or partially retracted

Shock and disappointment

Rabiya S. Tuma, The Economist, September 10, 2011

 World politics
 Business & finance
 Economics
 Science & technology
 Culture
 Blogs
 Debate & discuss
 Multimedia
 Print edition

Misconduct in science An array of errors

Investigations into a case of alleged scientific misconduct have revealed numerous holes in the oversight of science and scientific publishing

Sep 10th 2011 | from the print edition

ANIL POTTI, Joseph Nevins and their colleagues at Duke University in Durham, North Carolina, garnered widespread attention in 2006. They reported in the *New England Journal of Medicine* that they could predict the course of a patient's lung cancer using devices called expression arrays, which log the activity patterns of thousands of genes in a sample of tissue as a colourful picture (see above). A few months later, they wrote in *Nature*

Medicine that they had developed a similar technique which used gene expression in laboratory cultures of cancer cells, known as cell lines, to predict which chemotherapy would be most effective for an individual patient suffering from lung, breast or ovarian cancer.

 Investigation eventually found Anil Potti guilty of research misconduct.

 Several patients of the more than 100 enrolled on the clinical trials using the Potti genomic predictors sued and won settlements in lawsuits against the Duke researchers and administration.

Recommendations: Accountability & responsibility

- In any study, identify qualified individuals who will be accountable for laboratory work (specimens and assays), clinical data collection, data management, statistical and bioinformatic analyses, and interpretation of the results.
- Identify in manuscripts submitted for publication the specific contributions made by each author.
- Ensure that omics predictors to be used to guide patient care undergo sufficient independent review, and clinical trials using them receive proper oversight as routinely expected for drug trials.

Recommended reading

"There are a lot of lessons here that surely apply to other places." —GILBERT S. OMENN, UNIVERSITY OF MICHIGAN, ANN ARBOR

http://www.iom.edu/Reports/2012/Evolution-of-Translational-Omics.aspx

NCI criteria for the use of omics-based predictors in clinical trials: McShane et al. *Nature* 2013;502:317-320 (checklist) McShane et al. *BMC Medicine* 2013;11:220 (explanation & elaboration)

www.cancer.gov/espanol

www.cancer.gov