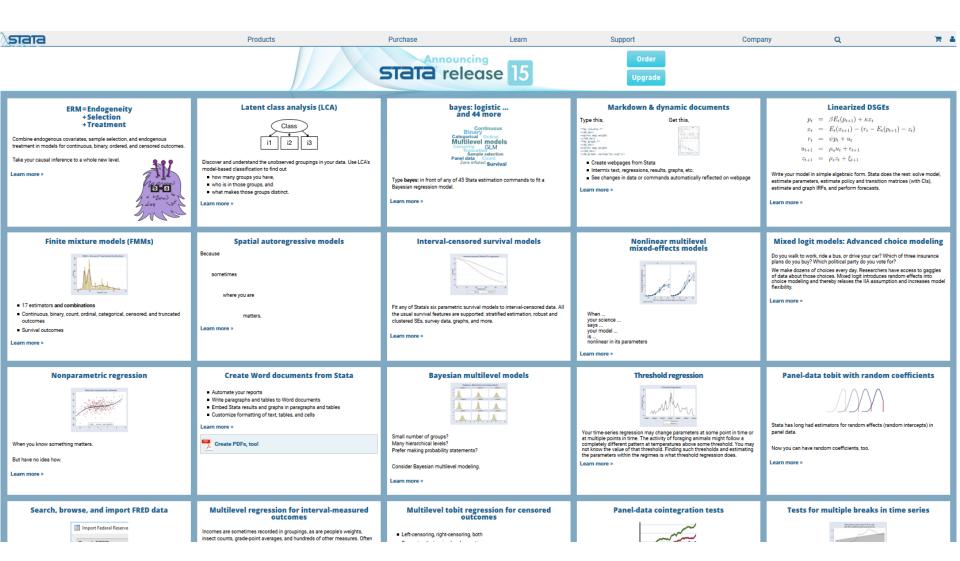
The STRengthening Analytical Thinking for Observational Studies (STRATOS) initiative – aims, concept and the general approach

Willi Sauerbrei for the STRATOS Initiative

Medical Center – University of Freiburg, Germany http://stratos-initiative.org/


Overview

- The STRATOS initiative Why?
- Key issues of topic group 2: selection of variables and their functional forms
- Comparison of statistical methods: How?

The STRATOS initiative – Why? Current situation in statistical methodology

- Statistical methodology has seen substantial development
- Computer facilities can be viewed as the cornerstone
- Possible to assess properties and compare complex model building strategies using simulation studies
- Resampling and Bayesian methods allow investigations that were impossible two decades ago
- Wealth of new statistical software packages allows a rapid implementation and verification of new statistical ideas

Software package STATA new procedures in 2018

Splines
a brief overview of regression packages in R

Package	Downloads	Vignette	Book	Website	Datasets
quantreg	2001231	Х	Χ		7
mgcv	1438166	X	Χ		2
survival	1229305	X	X		33
VGAM	297308	X	X	X	50
gbm	271362			X	3
gam	168143		Χ	X	1
gamlss	78295	X	X	X	29

Perperoglou et al, talk at ISCB 2017, see STRATOS website

Current situation in practical analyses

Unfortunately, many sensible improvements are ignored

Reasons why improved strategies are ignored

- Overwhelming concern with theoretical aspects
- Very limited guidance on key issues that are vital in practice, discourages analysts from utilizing more sophisticated and possibly more appropriate methods in their analyses

Statistical methodology – problems are well known

The severeness of problems is even discussed in the public press:

The Economist 'Unreliable research: Trouble at the lab.' (October 2013):

"Scientists' grasp of statistics has not kept pace with the development of complex mathematical techniques for crunching data. Some scientists use inappropriate techniques because those are the ones they feel comfortable with; others latch on to new ones without understanding their subtleties. Some just rely on the methods built into their software, even if they don't understand them."

The Lancet Research: Increasing Value, Reducing Waste Series

Comment (Introduction)

How should medical science change?

In 2009, we published a Viewpoint by Iain Chalmers and Paul Glasziou called "Avoidable waste in the production and reporting of research evidence", which made the extraordinary claim that as much as 85% of research investment was wasted.

Kleinert and Horton, 2014

"Although this vast enterprise has led to substantial health improvements, many more gains are possible if the waste and inefficiency in the ways that biomedical research is chosen, designed, done, analysed, regulated, managed, disseminated, and reported can be addressed."

Macleod et al., 2014

Better use of statistical methods

- At least two tasks are essential:
 - 1. Experts in specific methodological areas have to work towards developing guidance
 - 2. An ever-increasing need for **continuing education** at all stages of the career
- For busy applied researchers it is often difficult to follow methodological progress even in their principal application area
 - Reasons are diverse
 - Consequence is that analyses are often deficient
- Knowledge gained through research on statistical methodology needs to be transferred to the broader community
- Many analysts would be grateful for an overview on the current state of the art and for practical guidance

Aims of the initiative

- Provide evidence supported guidance for highly relevant issues in the design and analysis of observational studies
- As the statistical knowledge of the analyst varies substantially, guidance has to keep this background in mind. Guidance has to be provided at several levels
- For the start we will concentrate on state-of-the-art guidance and the necessary evidence
- Help to identify questions requiring much more primary research

The overarching long-term aim is to improve key parts of design and statistical analyses of observational studies in practice

Different levels of statistical knowledge

Level 1: Low statistical knowledge

Most analyses are done by analysts at that level

Level 2: Experienced statistician

Methodology perhaps slightly below state of the art, but doable by every experienced analyst

Level 3: Expert in a specific area

• To improve statistical models and to adapt them to complex real problems, researches develop new and more complicated approaches. Advantages and usefulness in practice need to be assessed

STRengthening Analytical Thinking for Observational Studies: the STRATOS initiative

Willi Sauerbrei, ** Michal Abrahamowicz, *Douglas G. Altman, *C Saskia le Cessie, *d and *James Carpenter* on behalf of the STRATOS initiative

Statistics in Medicine 2014

2011	ISCB Ottawa, Epidemiology Sub-Comm.	Preliminary ideas
2012	ISCB Bergen	Discussions, SG
2013	ISCB Munich	Initiative launched
2014-16	ISCB	Invited Sessions
2016	BIRS	First general meeting
2016	IBC Victoria	Invited Session
2016	HEC Munich	Invited Session
2017	IBS-EMR Thessaloniki	Invited Session
2017	ISCB Vigo	Scientific topic
2017	CEN-ISBS Vienna	Invited Session
2017	GMDS Oldenburg	Invited Session
2018	ISCB, RSS,	Invited Sessions
2019	BIRS	Second general meeting

http://www.stratos-initiative.org/

Topic groups

Topic Group		Chairs		
1	Missing data James Carpenter, Kate Lee			
2	Selection of variables and functional forms in multivariable analysis	Georg Heinze, Aris Perperoglou, Willi Sauerbrei		
3	Initial data analysis	Marianne Huebner, Saskia le Cessie, Werner Vach		
4	Measurement error and misclassification	Laurence Freedman, Victor Kipnis		
5	Study design	Mitchell Gail, Suzanne Cadarette		
6	Evaluating diagnostic tests and prediction models	Gary Collins, Carl Moons, Ewout Steyerberg		
7	Causal inference	Els Goetghebeur, Ingeborg Waernbaum		
8	Survival analysis	Michal Abrahamowicz, Per Kragh Andersen, Terry Therneau		
9	High-dimensional data	Lisa McShane, Joerg Rahnenfuehrer		

Cross-cutting panels

Panel		Chairs and Co-Chairs		
MP	Membership	Chairs:	James Carpenter, Willi Sauerbrei	
PP	Publications	Chairs:	Bianca De Stavola, Stephen Walter	
		Co-Chairs:	Mitchell Gail, Petra Macaskill	
GP	Glossary	Chairs:	Simon Day, Marianne Huebner, Jim Slattery	
WP	Website	Chairs:	Joerg Rahnenfuehrer, Willi Sauerbrei	
RP	Literature Review	Chairs:	Gary Collins, Carl Moons	
ВР	Bibliography	Chairs:	to be determined	
SP	Simulation Studies	Chairs:	Michal Abrahamowicz, Anne-Laure Boulesteix	
DP	Data Sets	Chairs:	Saskia Le Cessie, Aris Perperoglou	
ТР	Knowledge Translation	Chair:	Suzanne Cadarette	
		Co-Chair:	Catherine Quantin	
СР	Contact Organisations	Chairs:	Willi Sauerbrei	
VP	Visualisation	Chairs:	Mark Baillie	

Necessity of STRATOS illustrated by listing key issues of TG2:

Selection of variables and their functional forms in multivariable analysis

Building multivariable regression models – some preliminaries

Initial data analysis (TG3)

- ,Reasonable' model class was chosen

. . .

Aim of a model and model complexity

Most important distinction: "to explain or to predict" (Shmueli, 2010)

Prediction (TG6)

Here: TG2

model for explanation (or descriptive modelling)

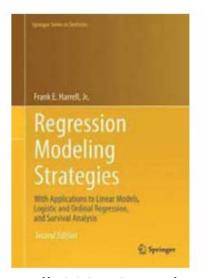
Causal inference (TG7)

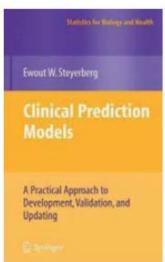
TG2: Part 1 – Selection of variables

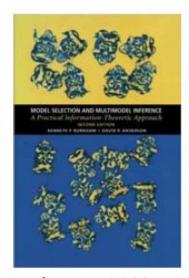
- Central issues:
 - To select or not to select (full model)?
 - Which variables to include?
- A large number of methods proposed (for many decades)
- High-dimensional data triggered the development of further proposals
- Many critical issues

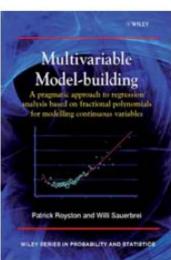
Opinions on variable selection

for models with focus on prediction and explanation






Variable selection



(Harrell, 2001; Steyerberg, 2009; Burnham & Anderson, 2002, Royston & Sauerbrei, 2008)

Heinze et al., BiomJ, 2018

- → Different philosophies
- → Emphasis on different aims

"Recommendations" from the literature

We do not know any recommendation which is supported by good evidence from theory or meaningful simulation studies

Problem of the practicing statistician:

What to do?

TG 2: Part 2 – selection of functional forms

- Assume linearity
 - Often ok but sometimes wrong. Can lead to wrong conclusions
- Cut-points
 - Many problems known for a long time. Nevertheless still very popular
- 'Optimal' cut-points
 - Worse than cutpoints
- Fractional polynomials and Splines
 - Flexible procedures but many open issues
 - More comparisons (simulation studies) needed

TG 2: Part 3 – Combining variable and function selection

Two inter-related questions, common to many multivariable explanatory models

Results of data-dependent selections of independent variables may depend on

- decisions regarding functional forms of both
 - 1. the variable of interest (X)
 - 2. other variables, correlated with X

and vice versa

For survival data (TG8):

- Effects may vary in time
- Another interrelated issue

TG 2 - State of the art?

- Which strategies for variable selection exist?
 What about their properties?
- Data-dependent modeling introduces bias.
 What about the role of shrinkage approaches?
- Comparison of spline procedures in a univariate context.
 Which criteria are relevant? Can we derive guidance for practice?
- What about variables with a 'spike-at-zero'?
- Multivariable procedures
 MFP well defined strategy
 Which of the spline based procedures?
- Multivariable procedures and correction for selection bias
 How relevant? One step or two step approaches?
 E.g. selection of variables and forms followed by shrinkage
- Big Data
 Does it influence properties of procedures and their comparison?
- Role of model validation

State-of-the-art - EVIDENCE is required!

Much research required!

Comparison of statistical methods

How?

LETTER TO THE EDITOR

Biometrical Journal

On the necessity and design of studies comparing statistical methods

Anne-Laure Boulesteix¹

Harald Binder²

Michal Abrahamowicz³

Willi Sauerbrei²

for the Simulation Panel of the STRATOS Initiative

http://onlinelibrary.wiley.com/doi/10.1002/bimj.201700129/full

More new methods needed?

"[...] in statistical research and related methodology-oriented fields such as machine learning or bioinformatics, the well-known adage 'publish or perish' could be translated into 'propose new methods or perish.'

Such a research paradigm is **not favorable for studies that aim at meaningfully comparing alternative existing methods** or, more generally, studies assessing the behavior and properties of existing methods.

It becomes more and more difficult to get an overview of existing methods, not to mention the overview of their respective performances in different settings."

More (meta)research needed!

No consensus on what makes a reliable comparison study

- Which designs are most appropriate?
- What are typical sources of potential biases and how can they be avoided?
- How can the results be interpreted without the tendency for overinterpretation?
- Which mixture of simulated and real data should be used?
- How should real data be selected?
- How should simulated data be generated in a realistic way inspired from real datasets?

... Which? What? How?

We need to recognize that there is no agreement among experts on the "state-of-the-art" methods for many topics relevant in practice."

Guidance for analysis is needed for many stakeholders (analysts with different levels of knowledge, teachers, reviewers, journalists,)

Researchers

First in a Series of Papers for the Biometric Bulletin

STRATOS initiative – Guidance for designing and analyzing observational studies

STRATOS INTERPOS

Willi Sauerbrei¹, Marianne Huebner², Gary S. Collins³, Katherine Lee⁴, Laurence Freedman⁵, Mitchell Gail⁶, Els Goetghebeur⁷, Joerg Rahnenfuehrer⁸ and Michal Abrahamowicz⁹ on behalf of the STRATOS initiative.

Short papers from

TG1 – missing data

TG4 – measurement error and misclassification

TG3 – initial data analysis

TG2 – Variable and function selection have appeared

Consumers

Guidance for designing and analysing observational studies:

The STRengthening Analytical Thinking for Observational Studies (STRATOS) initiative

Willi Sauerbrei¹, Gary S. Collins², Marianne Huebner³, Stephen D. Walter⁴, Suzanne M. Cadarette⁵, and Michal Abrahamowicz⁶ on behalf of the STRATOS initiative

Volume 26 Number 3 | Medical Writing September 2017 | 17

Journal of the European Medical Writers Association (EMWA)