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Target population and censoring
When doing statistical inference, data are considered a sample from
some target population to which parameters refer.

In survival analysis, parameters (like the survival function S(t) or the
hazard function h(t)) refer to a potentially completely observed
population, i.e. one without censoring.

The object of survival analysis is then (the ambitious one) of drawing
inference for such parameters based on incomplete data.

This requires an assumption of independent censoring.
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Independent censoring
Independent censoring means that individuals censored at any given
time t should not be a biased sample of those who are at risk at time t.

Stated in other words: the hazard

h(t) ≈ P(T ≤ t+ dt | T > t)/dt

gives the event rate at time t, i.e. the failure rate given that the
subject is still alive (T > t).

Independent censoring then means that the extra information that the
subject is not only alive, but also uncensored at time t does not
change the hazard.

Typically, independent censoring cannot be tested from the available
data - it is a matter of discussion. However, it is crucial that the
complete population (without censoring) is well-defined.
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Inference for independently censored data
For independent observations (Xi,∆i, i = 1, . . . , n), with
Xi = min(Ti, Ui),∆i = I(Ti ≤ Ui), the likelihood is conveniently
expressed via the hazard (and cumulative hazard) functions:

L(θ) =
∏
i

hθ(Xi)
∆i exp(−Hθ(Xi)).

This leads (with suitable definition of NPMLE) to the Nelson-Aalen
estimator for H(·) and to the Cox partial likelihood.

Using the relation between S(t) and H(t) leads to the Kaplan-Meier
estimator as a plug-in estimator (because the product-integral relation
S(t) = exp(−H(t)) for absolutely continuous distributions becomes a
finite product for a discrete distribution).
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Target population

Alive
10

Dead-
h(t)

In the target population with complete observation, every one ends up
in state 1 and the probability of being in state 1 at time t (the ‘failure
risk’) is given uniquely from the hazard:

F (t) = 1− S(t) = 1− exp(−H(t)).
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Competing risks
Suppose now that the event of interest is not overall mortality (or a
composite end-point that includes death) but rather something like the
occurrence of a given disease.

Then, in the target population even with complete follow-up, every
one will not experience the event: some subjects will die without ever
getting the disease.

Deaths without the disease should then not be thought of as an
‘independent censoring’ because a target population ‘without
censoring’ (i.e., one where subjects are not allowed to die without the
disease) is completely hypothetical.

We have competing risks.
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Relationship between rates and risks
The cause-specific hazards j = 1, 2 are the transition intensities:

hj(t) ≈ P(state j time t+ dt | state 0 time t)/dt.

The state occupation probabilities include the overall survival function:

S(t) = P(alive time t) = exp(−(H1(t) +H2(t))

and the cumulative incidences (‘risks’) for causes j = 1, 2:

Fj(t) = P(state j time t) =
∫ t

0
S(u)hj(u)du.

-t t t t
0 u u+ du t

time

Both rates are needed to compute one risk!
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Inference for independently censored data
For independent observations (Xi,∆i ·Di, i = 1, . . . , n), with
Xi = min(Ti, Ui),∆i = I(Ti ≤ Ui), Di =final state, the likelihood
may again be expressed via the cause-specific hazard (and cumulative
hazard) functions:

L(θ) =
∏
i

h1,θ(Xi)
∆iI(Di=1)h2,θ(Xi)

∆iI(Di=2) exp(−H1θ(Xi)−H2θ(Xi))

which factorizes:

L(θ) =
∏
i

h1,θ(Xi)
∆iI(Di=1) exp(−H1θ(Xi))

×
∏
i

h2,θ(Xi)
∆iI(Di=2) exp(−H2θ(Xi)).
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Consequences of likelihood factorization
• Each factor has the form it would have if only cause j events were

events and events of the other type were treated as (independent)
censorings

• In particular, the Nelson-Aalen estimator for Hj(·), j = 1, 2 and
the Cox partial likelihood for each cause separately work perfectly
well

• Cumulative incidences may be estimated by plug-in (the
‘Aalen-Johansen estimator’), while the ‘1-Kaplan-Meier estimator’
for cause j estimates∫ t

0

exp(−Hj(u))hj(u)du

and is (upwards) biased for Fj(t)

• First of all, it leads to confusion and misunderstanding
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Confusion
Frequent question:

“why can we use the Cox model with competing risks but not the
Kaplan-Meier estimator?”

Questions like that have lead to numerous (more or less) pedagogical
papers in the applied (mostly medical) literature trying to explain
these difficulties. These include:

Satagopan et al. (2004). Br. J. Cancer, 91, 1229-1235.

Southern et al. (2006). J. Clin. Epidemiol., 59, 1110-1114.

Kim (2007). Clin. Cancer Res., 13, 559-565.

Biau et al. (2007). Clin. Orthopaed. and Rel. Res., 462, 229-233.

Scrucca et al. (2007). Bone Marrow Transpl., 40, 381-387.

Zhang et al. (2008). Expert Rev. Clin. Pharmacol. 1, 391 .

Dignam et al. (2008). J. Clin. oncol., 26, 4027-4034.
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Shiels et al. (2009). J. Clin. Epidemiol., 63, 459-467.

Wolbers et al. (2009). Epidemiol., 20, 555-561.

Lau et al. (2009). Amer. J. Epidemiol., 170, 244-256.

Allignol et al. (2011). BMC Med. Res. Methodol., 11, 86.

Andersen et al. (2012). Int. J. Epidemiol., 41, 861-870.

Austin et al. (2016). Circulation, 133, 601-619.

Much of the confusion seems to arise from not clearly distinguishing
between censoring and competing risks (defining the target
population) and between ‘rates’ and ‘risks’.
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Rates vs. risks?
Competing risks ‘analogy’:
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Gladiators
Suppose that a gladiator may lose via two quite different mechanisms:
lions or fellow gladiators.

When training a gladiator, he should both be prepared to face a lion or
a fellow gladiator, and special skills may be needed to face a lion (even
in the presence of the competing risk) and, similarly, special skills may
be needed to beat a fellow gladiator. The cause-specific hazards
describe how these mechanisms depend on properties and equipment
of the gladiator.

For Ceasar to predict the number of remaining gladiators still around
at time t, both risks must be considered. He needs the cumulative
incidences given the distribution of properties and equipment of the
population of gladiators.
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Conclusion

• Cause-specific hazards describe the mechanisms by which subjects
may fail.

• Cumulative incidences describe the fraction of the population that
fails from given causes.

• Both are useful (and both are needed?) for a complete description
of the competing risks situation.

Latouche A., Allignol A., Beyersmann J., Labopin M., Fine J.P.: A competing risks analysis

should report results on all cause-specific hazards and cumulative incidence functions. J.

Clin. Epidemiol. (2013) 66, 648-653.
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Competing risks and TG8
Competing risks is, therefore, cruicial for STRATOS TG8 and we have
to find our niche in this vast literature.

The above-mentioned papers correspond to ‘STRATOS-level 1’.

Can/should we contribute more to that?

Or should we focus on level 2?

(I am quite sceptical towards STRATOS-level 3.)
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Competing risks and other topic groups

TG1 (missing data) There is a steadily increasing literature on how to
do multiple imputation in competing risks analysis with missing
data (e.g., Bartlett & Taylor, Biostatistics, 2016; Delord & Genin,
J. Statist. Comp. Sim., 2016).

Methods depend on whether covariates or cause of failure is
missing. Important to distinguish between censoring and failure
from a competing cause.

TG2 (variable selection and functional forms of a dose-response
relationship) Special regression models are typically used for
survival analysis (possibly with competing risks) though working
with models with a linear predictor (LP ) is quite similar for
different types of outcome variable.

More below.
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TG6 (evaluating diagnostic tests and prediction models) When
assessing predictive accuracy, special care is needed for
right-censored outcomes, including situations with competing risks.

More below.

TG7 (causal inference) Both when using IPTW and when using the
g-formula, special techniques are needed in the presence of
competing risks.

More below.
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Marcus Porcius Cato (“Cato the elder”, ≈ 234 BC - 149 BC): Roman
soldier, consul, senator etc.

“Ceterum censeo Carthaginem esse delendam”
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Marcus Porcius Cato (“Cato the elder”, ≈ 234 BC - 149 BC): Roman
soldier, consul, senator etc.

“Moreover, I advise that Carthage must be destroyed”
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Pseudo-observations
“Moreover, I think that pseudo-observations are useful in survival
analysis”

Consider censored data and a mean value parameter θ = E(f(T )).

Possible mean value parameters, θ of interest are:

• survival probability S(t) = E(I(Ti > t)),

• t−restricted mean µt = E(Ti ∧ t),

• cumulative incidence in competing risks

Fj(t) = E(I(Ti ≤ t,Di = j)).
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Regression analysis for E(f(T ) | Z) may be performed using
pseudo-observations as targets in a GEE:

θi = nθ̂ − (n− 1)θ̂−i.

Here, θ̂ is a consistent estimator for the marginal mean (e.g., the
Aalen-Johansen estimator for the cumulative incidence) and θ̂−i is the
same estimator applied to the sample of size n− 1 obtained by
eliminating subject i.

With no censoring, θi in the examples is simply, respectively:

• I(Ti > t),

• Ti ∧ t,

• I(Ti ≤ t,Di = j).
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Properties of pseudo-observations
Graw, Gerds and Schumacher (LIDA, 2009) showed (for the competing
risks cumulative incidence function) that if censoring is independent of
covariates then, uniformly in i = 1, . . . , n as n→∞:

E(Fji(t) | Zi) = E(I(Ti ≤ t,Di = j) | Zi) + oP (1).

(For covariate-dependent censoring - see Binder, Gerds and Andersen,
LIDA, 2014)

Later asymptotic results by Jacobsen and Martinussen, (Scand. J.
Statist., 2016) and Overgaard, Parner and Pedersen (submitted), show
that the estimated SD using the sandwich estimator when
pseudo-values are used as targets in GEE may be (slightly)
conservative.
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Variable selection and functional forms
Competing risks regression for the cumulative incidence (at one or a
few time points) may be performed using pseudo-observations (Klein
& Andersen, Biometrics, 2005; Gerds et al., Stat. in Med., 2012):

∑
i

(
∂

∂β
g−1(LPi)

)T

V −1
i (Fji − g−1(LPi)) = 0.

Pros:

• Easy to apply different link functions, g not only the cloglog link

• Scatterplots and residual plots are available (Pohar Parme &
Andersen, Stat. in Med., 2008)

Cons:

• Not fully efficient

• Not (yet) possible to do for all time points simultaneously
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Evaluation of prediction models
Pseudo-observations may be used when estimating the Brier score for a
competing risks regression model for the cumulative incidence (Cortese
et al., Stat.in Med., 2013). The estimated value for complete data:

B̂j(s, t) =
1

ms

∑
i∈R(s)

(
I(Xi(t) = j)− rj(t | Zs)

)2
(where rj(t | Zs) is the predictor used at time s) is then replaced by

B̃j(s, t) =
1

ms

∑
i∈R(s)

(
Fji(t | s)(1− 2rj(t | Zs)) + rj(t | Zs)2

)
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Evaluation of prediction models
Pseudo-observations may also be used for making a calibration plot for
a prediction model rj(t | z) (Gerds et al., Stat. in Med., 2014).

The calibration curve is the graph of p→ C(p, t, r):

Cj(p, t, r) = EX,Z
(
I(X(t) = j) | Z ∈ Gr(t; p)

)
where Gr(t; p): set of covariates Z for which r predicts an event
probability of p at t:

Gr(t; p) = {z ∈ Rd : rj(t | z) = p}.

The calibration curve may be estimated by:

Ĉj,an(p, t, r) =
1

nan

n∑
i=1

Fji(t)Kan(p, rj(t | Zi)).
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Causal inference
The ‘g-formula’ for a completely observed putcome, Y is:

1

n

n∑
i=1

(
Ê(Yi | Ai := 1, Zi)− Ê(Yi | Ai := 0, Zi)

)
.

The propensity score weighted outcome to be used in a marginal
structural model is:

Ỹi =
AiYi
ê(Zi)

+
(1−Ai)Yi
(1− ê(Zi))

(where e(Z) = P(A = 1 | Z) is the propensity score). For a
time-to-event outcome, e.g. the competing risks cumulative cause j
incidence at time point t, Andersen et al. (submitted) showed that the
outcome Yi in these expressions may be replaced by the pseudo-value
Fji(t).
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Concluding remarks

• Competing risks is a central topic for TG8

• (However, there are many other topics of interest for TG8)

• Many examples of overlap between TG8 and other TG’s

• Here, exemplified via competing risks

• Pseudo-values are useful (and fun!)
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