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Focus of TG8: TIME = Change  

• STRATOS TG8 focuses on challenges specific to  
 Survival (Time-to-Event) Analyses of longitudinal studies that 

Follow a Cohort over Time  
 usually to detect Associations of Predictors with Time to an Event  
 (clinical endpoint, e.g. death)  

• Yet, for >1,600 years [1] most philosophers agree that  
 the concept of (un-observed) TIME IS INHERENTLY LINKED to our 

Ability to OBSERVE CHANGE  
 (i.e. Time is Defined by Change) 
 
 [1] [St. Augustine’s Confessions (Book 11) ca AD 397] 

  



TIME = CHANGE  
(Lake Moraine, Canadian Rocky Mts. 

 Site of the STRATOS Banff meeting excursion, July  2016 ) 



2 Key Time-related Complexities 

1)   Time-Varying Covariates =  

    Changes-over-Time in the Predictor VALUE 
 

2)    Time-Dependent Effects  =  

    Changes-over-Time in the Predictor EFFECT 



PART 1: TIME-VARYING COVARIATES 



The Simplest Example of TIME-VARYING COVARIATE: 
Treatment (TX) initiated DURING the Follow-up 

 

   

Patient Time  Start Time End Age (yrs) Current 
Treatment  A(t) 

Event 

i 0 20 52 0 0 

i 21 45 52 1 0 

Data Setup (with Time-Varying Treatment A(t)) for patient “i” 

Treatment History for patient “i” 

t = Time 
0 20 45 

Cohort entry Treatment starts Censoring 



TIME-VARYING COVARIATES are Necessary to 
AVOID “IMMORTAL TIME BIAS”   

• Using Time-Fixed Covariate (EVER Treated A=1 vs. UN-treated A=0) to 
model Time-Varying Treatments, induces systematic BIAS toward a 
‘Protective’ effect’ [Zhou et al AJE 2005; Suissa AJE 2008] 

      This “Immortal Time Bias” [Suissa, AJE 2008] is due to Mis-Classification of 
True Exposure (before Tx Initiation) by Time-Fixed covariates: 

 An Ever-Treated (A=1) subject has (by definition) to ‘survive’ until his Tx 
Initiation time τ, i.e. is effectively ‘immortal’ until time τ 

 Yet, Time-Fixed covariate, Incorrectly ‘credits’ this survival time to the 
Treatment group (A=1), even if the subject was UN-tread during that 
time (A(t)=0 for  0<t< τ) 



Example of Immortal Time Bias 
[Tsoukas et al, Arch Surg 1998] 

• Goal: To assess the potential protective effect of Splenectomy (“Exposure”= 
spleen removal) against Mortality (Outcome) in HIV+ subjects during the early 
phase of HIV epidemic  

• Sample: N=45 HIV+ subjects  
      30 splenectomised (including13 (43%) after time 0); 32 deaths  

• Results of 2 Cox models (both adjusted for Age & CD4): 

1) Time-Fixed exposure (S=1 if subject ever splenectomised during follow-up, S=0 if 
Never): 

         HR = 0.39 (95% CI: 0.17; 0.86), p = 0.02** 

2) Time-Varying exposure (S(t)=1 only After splenectomy) 
         HR = 0.51 (95% CI: 0.23; 1.16), p = 0.11 (NS) 

• CONCLUSION: Time-Fixed model (1) Incorrectly suggests a Significant 
Protective effect of splenectomy due to Immortal Time Bias 



Need to use TIME-VARYING COVARIATES to AVOID 
Length Bias due to “using Future to predict Past” 

• Another example of Immortal Time Bias induced by Time-Fixed covariate: 
      paradox of “longer survival of Oscar winners”,  
      avoided with Time-Varying covariates (to get an Oscar one Has to Survive 

between ~10 and ~80 years) [Sylvestre et al, Ann Int Med 2006]  

• More Complex “Length Biases”, induced if Time-Fixed covariates are 
Incorrectly used to model ‘exposures’ or risk/prognostic factors that 
Change DURING the Follow-Up: 

– Example:  
      Time-Varying covariates are necessary to avoid biased estimates of Cumulative 

Effects (e.g., Exposure Duration or Cumulative Dose)**  [Abrahamowicz et al, Stat Med 2012] 

      ** Modeling with Time-Fixed covariates = “using Future to predict Past” 



Length Bias due to modeling Cumulative 
Exposure Duration as Time-Fixed covariate 

Subject 
Time 
interval 
(t) 

Current 
Exposure  
A(t) 

TIME-VARYING 
Cumulative 
Exposure 
Duration until 
end of Interval 
D(t) 

TIME-FIXED 
Total Cumulative 
Exposure 
Duration until 
end of Follow-up  
D 

Event 

B 0-10 1 10 40 0 

B 10-20 0 10 40 0 (Survived day 20 
with No event) 

B 20-30 1 20 40 0 

B 30-40 1 30 40 0 

B 40-50 1 40 40 0 (Censored at 50 
days) 

C 0-10 1 10 20 0 

C 10-20 1 20 20 1 (Event at day 20) 



Modeling Exposure Total Duration with Time-FIXED covariate induces 
Spurious Association: LOW Duration  HIGH Risk (RED Arrow) 

EARLY 
Event HIGH Risk 

SHORT Follow-Up  
LOW Total Exposure 
DURATION during 

Follow-up D 



Length Bias due to modeling Cumulative Exposure Duration 
 as a Time-Fixed covariate 

• Simulated EXAMPLE  

    (Data Simulated so that Longer Exposure Duration 
increases the Hazard of an Adverse Event):   

– Time-VARYING covariate D(t): HR = 1.69 for 1 
month Increase in Exposure Duration (until time t) 
  Longer Duration  Higher Risk 

– Time-FIXED covariate D: HR = 0.20  for 1 month 
Increase in (Total) Exposure Duration (over entire 
follow-up) (Incorrectly suggesting:  

   Longer Duration  LOWER Risk) 



2 Examples of more Complex Time-Varying exposures/risk factors: 
LEFT: changes in Dose of a Drug (over 180 days) for 1 subject; 

RIGHT: changes in SBP (over 36 yrs) in 4 Framingham Study subjects   



Conceptual and Analytical CHALLENGES in Modeling 
Effects of COMPLEX TIME-VARYING Exposures 

• Challenge: 

 To Assess how the ‘current’ Risk (Hazard) at time T  
 depends on the History of Past Values of Time-Varying Exposure ? 
       [i.e. a Time-Vector: X(t) for  t ≤ T]  

• Conceptual Questions: 

 Do Past Values matter (e.g. Lagged or Cumulative effects)?  

 If Yes, what is the Relative Impact of Exposures that occurred at Different Times 
in the Past (e.g., Drug Doses taken 2 days ago Versus 30 days ago)?   

• 2-Step Solution: 

1. Define a Time-Varying Exposure metric M(T) that aggregates information on Past 
Values: 

M(T) = f [X(1), X(2),… X(T-1), X(T)] 

2. Use standard regression methods (e.g. Cox model) with Time-Varying covariates 
to Estimate e.g. Hazard Ratio associated with M(T) 



Most recent Pharmaco-Epidemiology  studies of Time-Varying 
drug exposures typically use Arbitrary Definitions of M(T) 

• EXAMPLE: 
     Mutually Incompatible, Arbitrary Definitions of M(T) used in  
     6 Different Studies of the SAME association between Oral 

Glucocorticoids Exposure &  Risk of Infections [1-6]:  
– ‘Current use’ 
– ‘Recent use’ 
– ‘Ever use’ 
– ‘Total past dose’ 

 

[1] Franklin J et al, Ann Rheum Dis 2007; [2] Lacaille D et al, Arthritis Rheum 2008;  

[3] Smitten AK et al, J Rheumatol 2008; [4] Schneeweiss S et al, Arthritis Rheum 2007; 
[5] Bernatsky S, Hudson M, Suissa S, Rheumatology (Oxford) 2007;  

[6] Saag KG et al, Am J Med 1994]  



• To avoid the need for arbitrary selection of M(T) metric, we proposed a more general 
model: (recency-)Weighted Cumulative Exposure (WCE) model, where the 
Cumulative Effect of Past Exposure History, on the Current Hazard, is modeled as 
Weighted Sum of Past Doses: 

 
 
 
 

u = current time (when Risk is being assessed) 
WCE(u)= Weighted Cumulative Effect of Past Doses (Time-Varying) 
X(t) = Dose at time t (t ≤ u) 
u-t = Time elapsed since Dose X(t) was received 
w(u-t) = Weight Function (describing Relative Importance of Dose X(t) as a function of Time Elapsed (u-t)) 

• The Weight Function is estimated (directly from the data) using Flexible Cubic 
Splines, which avoid the need to specify a priori its shape (or analytical form) 

 [Sylvestre & Abrahamowicz 2009**; Xiao et al, 2014]  

** R package implementing flexible WCE analyses: 
     http://cran.rproject.org/web/packages/WCE 

Weighted Cumulative Exposure (WCE) model 
[Abrahamowicz et al, J Clin Epi 2006; Sylvestre & Abrahamowicz, Stat Med 

2009; Xiao et al JASA 2014 (extension to MSMs with IPT weights)] 

     



ut
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Example of Application of WCE: use of oral Glucocorticoids 
(GC) vs. risk of serious Infection in rheumatoid arthritis (RA) 

• Objective: To explore how the risk of serious infection depends on 
current and prior oral GC therapy in N= 16,207 elderly (>65 yr) RA 
patients (Quebec, Canada, 1985-2003)* 

• Nested case-control design: 1,851 cases of serious infection 

• Analyses adjusted for several potential confounders  

• WCE model fit much better** than any of the 10 ‘conventional’ 
Cox models with different time-varying exposure metrics M(T)  

     (** AIC lower by 29 to 140 points) 

     [Dixon, Abrahamowicz, Beauchamp et al, Ann Rheum Diseases 2012] 

* Data from W. Dixon (Manchester, UK) & S. Bernatsky (McGill) 



WCE-based Weight function for the association of prior GC exposure with serious infection: 
(expected) SHORT-Term impact on Innate Immune System (use in the last 3-6 months) &  
(unexpected) LONG-Term impact on Adaptive Immune System (use 1.5-2.5 yrs ago) [1] ? 

 [1] = [McMaster & Ray, Nat Clin Pract Endocrinol Metab 2008] 



WCE Estimates of Adjusted Odds Ratios for the associations of 
Various Patterns of Past GC therapy with Current Infection Risk 

Pattern of use  Reference OR * (95% CI) 

Current user, 5mg, for last 7 days Non-user  1.03 (1.02, 1.10) 

Current user, 5mg, for last 28 days Non-user 1.11 (1.07, 1.26) 

Current user, 5mg, for last 3 months Non-user 1.33 (1.21, 1.46) 

Current user, 5mg, for last 3 years Non-user 2.05 (1.77, 2.32) 

Past user, 5mg, for 6 months, stopped 6 
months ago 

Non-user 1.09 (0.97, 1.26) 

Current user, 30mg, for last 28 days Non-user 1.92 (1.50, 4.05) 

Current user, 30mg, for last 3 months Non-user 5.51 (3.17, 9.54) 

2 CONVENTIONAL Time-Varying Cox Models: 

1/ CURRENT User (any exposure 
duration, any dose) 

Non-user 1.85 (1.65, 2.08) 

2/ EVER User (use at any time in 
past/present,  any duration,  any dose) 

Non-user 1.66 (1.47, 1.88) 

* Odds Ratio for the relative ‘risk’ of infection for the pattern of use in the 1st  column compared to the 
reference pattern of use in the 2nd column.  



2nd WCE Application (Marginal Structural Models): 
Didanosine (DDI) use vs. Cardiovascular (CVD)Risks in HIV 

• Background: Inconsistent recent results [Lang et al, Arch Int Med 2010; Worm et al, J Infect Dis 
2010] re: potential Increased Cardiovascular (CVD) Risks with use of Didanosine (DDI) (an 
Nucleoside Analog Reverse Transcriptase Inhibitor (NRTI)) [Sabin et al, Lancet 2008] 

• Objective:  To re-assess the impact of DDI use on CVD risks in 11,625 patients in Swiss HIV 
Cohort (with 350 CVD events in up to 12 yrs of follow-up) 

• Methods: Marginal Structural Models (MSM) with IPT weights to account for monthly 
measurements of time-varying confounders (CD4 cells, RNA)  

• Results [Xiao et al, J Am Stat Assoc (JASA) 2014; Young et al, J AIDS 2015]:   

o Conventional Cox MSM’s with different simple time-varying metrics of DDI exposure (current use, recent 
use (past 6 months), total (un-weighted) duration) all  yielded Non-Significant Estimates (95% CI for HR 
included 1)   

o In contrast, our WCE Cox MSM fit the data much better (AIC lower by ~ 10 points) than any conventional 
model) and  Significantly (p<0.01) better than MSM that assumed No DDI effect     

o WCE estimates suggested a Complex “Dual” effect** of Past DDI exposure, which helped explain 
inconsistencies in previous publications  (** risk Increase associated with Current/Recent use in past 12 
months versus risk Decrease associated with Past use, 12-24 months ago) 



Weight Function (WCE MSM) for “Dual effect”** of past DDI use on CVD risks  
(** risk Increase associated with Current/Recent use in past 12 months versus         

risk Decrease for Past use, 12-24 months ago) 



Estimated Total Cumulative Effect (HR) of Being Always Treated with DDI 
(versus Never treated) as a function of Treatment Duration (WCE MSM model) 



Part 2: TIME-DEPENDENT EFFECTS 



Cox’s PH model 

• In 1972, (now) Sir David R. Cox published Regression models and life tables in 
the Journal of Royal Statistical Society (JRSS, series B) 

• By 2002, this paper had been cited in >17,000 articles 

• Indeed, the Cox's Proportional Hazards (PH) regression model has become a 
standard method for survival (time-to-event) analyses 

• Yet, the PH model is usually selected a priori and the underlying PH 
assumption is rarely tested** 

     (** E.g., among the 43 multivariable survival analyses published in top cancer  
journals in early 1990’s, >97% (42/43) relied on Cox PH model, but ONLY <5% 
(2 of 42 papers) reported testing the PH hypothesis  

      [Altman et al, Br J Cancer 1995]) 



where: 
 
covariate vector, which may include Time-Varying Covariates X(t) 
 
baseline Hazard function (for the ‘reference group’ with X=0) 
 
conditional hazard, for subjects with a given covariate vector X 
 
 
regression parameter vector = log (Hazard Ratio) 

Proportional hazards (PH) model: 

• Important Proportional Hazards assumption: 
– Hazard ratios are Constant over time, i.e. covariate effects on the 

hazard do Not change during the follow up (PH assumption) 

 βX(t)expλX)λ(t, 0

(t)λ0

X

X)λ(t,

β



Why Proportional Hazards (PH) assumption 
may be incorrect in many applications? 

• Some reasons why Hazard Ratio (HR) may Vary over Time: 

• Design limitations 

– Inherently Time-dependent covariates are measured at baseline only, and used to 
predict outcomes over long follow-up (HR Decreases toward Null?) 

     (e.g., does serum cholesterol measured today will predict cardiovascular mortality in the 
next 15 years equally well as in the next 5 years?) 

• Impact of a chronic disease (binary variable) on the hazard increases with 
increasing damage (HR Increases over time?) 

• Lagged effect of treatment (HR initially close to null (HR=1) then Decreases 
reflecting Long-Term Protective effect?) 

t 

HR 

1 

t 

HR 

1 

t 

HR 
1 

Constant 
(incorrect)  
HR estimate 



REAL-LIFE EXAMPLE of PH Violation (converging KM curves): 
Early Protective Effect of ASA, against CVD, Lasts Only <2 yrs 

Cote, Battista, Abrahamowicz et al, Ann Int Med 1995 (RCT of Aspirin vs. Placebo, for 
preventing CVD  in Asymptomatic pts with Carotid Bruits)  



28 

Overview of (selected) methods to Test and/or 
Account for potential Violations of the PH hypothesis 

• In the last 3 decades, statisticians proposed Dozens of Tests to formally test the PH hypothesis 
(see e.g. reviews by [Ng’andu, Stat Med 1997] and [Grant et al, Lifetime Data Anal 2014]) 

• More recent Methods allow not only testing the PH hypothesis (separately for each predictor) 
but, in the case of its being rejected, also Flexible Modeling of the TIME-DEPENDENT (TD i.e. 
Non-PH) Predictor Effects on the Hazard (i.e. Changes over Time in HR) 

• Alternative Flexible TD extensions of the Cox model were proposed by:  

• Zucker & Karr, Ann Stat, 1990 

• Gray, JASA, 1992 

• Hastie & Tibshirani, JRSS, 1993 

• Grambsch & Therneau, Biometrika 1994 

• Hess, Statistics in Medicine, 1994 

• Verweij & Houwelingen, Biometrics, 1995 

• Kooperberg, Stone, Truong, JASA, 1995 

• Abrahamowicz, MacKenzie, Esdaile, JASA, 1996 

• Therneau TM & Grambsch PM. Modeling Survival Data: Extending the Cox Model. Springer, New York, 
2000. (MONOGRAPH)*** 

        *** with Comprehensive User-Friendly R Software package that implements PH tests and flexible TD 
modeling: 

        Therneau T. survival: A Package for Survival Analysis in S, version 2.39. R package, 2016, http://CRAN.R-
project.org/package=survival.  



Cox PH model: 
 

 

 

TIME-DEPENDENT (TD) HAZARD RATIO model:* 
 

 

 

 

 

where: the time-function βj (t) = estimate of the Time-Dependent (TD) effect of predictor Xj (log 
Hazard Ratio at time t),  

βj (t) is modeled using flexible quadratic regression B-splines, 

to avoid the need to a priori specify the shape or pattern of changes over time in the predictor’s 
effect on the hazard 

* [Abrahamowicz, MacKenzie, Esdaile, J Am Stat Assoc (JASA) 1996] 

Example of a flexible Time-Dependent (non-PH) model 
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Example of a TD effect:  
HR(t) of Cardiovascular Events for Ex-Smokers vs. Never-Smokers  

Decreases fast with Increasing Time-since-Smoking-Cessation 

[Rachet, Abrahamowicz, Sasco, et al. Statistics in Medicine 2003] 



[Quantin, Abrahamowicz, Moreau, et al. Am J Epi (AJE) 1999] 

Different Patterns of TD Effects of Prognostic Factors for Mortality 
in Colon Cancer (all estimated with the same Spline model) 



TD effect of Karnofsky score (at time 0) vs. Mortality in Advanced Lung 
Cancer: Initially Low Score is Protective (log HR<0) but the effect 
disappears by 100 days [Grambsch & Therneau, Biometrika 1994] 



Time-Dependent Effect of a CONTINUOUS 
variable (Prothrombin time (PT) in PBC)  

p=0.03 for the test of time-dependence (TD) refers to the LINEAR effect of PT on the log 
hazard &, thus, Implies the Slope (HR for 1 unit increase in PT) changes over time 
QUESTION: is the underlying LINEARITY ASSUMPTION Valid? 



• Including an Untransformed CONTINUOUS predictor X in the 
Conventional PH Cox model imposes (implicitly) the LINEARITY 
assumption (common to all General Linear Models): 

 

 

• In the PH model, Linearity implies the relationship between  

 X and the logarithm of the hazard is Linear (with Slope = β) 

• Similarly: in flexible TD extensions of the Cox model, Linearity implies that, 
at any time t during follow-up: the current relationship between X and the 
logarithm of the hazard is Linear (with Current Slope = β(t)) 

• Yet, many important Continuous Risk/Prognostic Factors have highly Non-
Linear effects, which are the focus of STRATOS TG2  

      [Sauerbrei et al, Stat Med 2014] (overview of the STRATOS initiative) 

Linearity assumption (re: Effects of Continuous 
predictors) in Cox PH & Flexible TD models  

 βX(t)expλX)λ(t, 0



For a Continuous Predictor X, its joint TD and NL effects are accounted for by  

modeling log HR(t,x) (HR for value x, at time t) as a product of 2 functions: 

 

 

 

(t) = change over time in the strength of the X’s impact on log hazard (TD effect) 

 r(x) = shape (constant over time) of the Non-linear risk function 
              i.e. changes in log hazard associated with changes in value of X (NL effect) 

Both β(t) and r(x) modeled using quadratic regression B-splines 

OTHER Flexible TD/NL Models: 

• Sauerbrei et al, Biometrical Journal 2007 (Fractional polynomials) 

• Remontet et al, Statistics in Medicine 2007 (Additive NL & TD effects in Relative survival)  

• See also comments on the need of consider both NL & TD effects of continuous predictors  in 
Therneau & Grambsch’s 2000 book [Modeling Survival Data] 

Extension of the TD model [Abrahamowicz et al, JASA 1996] to  
Joint flexible modeling of TD & Non-lInear (NL) effects of 

Continuous predictors on the hazard   
[Abrahamowicz& MacKenzie, Stat Med 2007; Wynant & Abrahamowicz, Stat Med 2014, 2016]  

β(t)r(x)x)logHR(t, 



NL (top Left) & TD (top Right) effects of Cumulative Past 
Smoking Exposure on Lung Cancer hazard among Ex-Smokers 

[Abrahamowicz & MacKenzie, Stat Med 2007] 



Significant TD (left, p<0.001) and NL (right, p=0.024) effects of ALBUMIN on the 

hazard of Mortality in Non-small Cell Lung Cancer 
 [Gagnon et al, Br J Cancer 2010] 



Real-life example of Importance of flexible TD/NL modeling: 
Albumin is a ‘Significant’ Predictor for Mortality in non-small cell 

Lung Cancer Only IF its NL & TD effects are accounted for 
(p=0.49 in Cox PH/Linear vs. p<0.001 in flexible NL/TD models) 



Need for Further Extensions to handle 
Additional Challenges in Survival Analyses  

Beyond a Single Endpoint with Exact Event Time (e.g. Death): 

• Competing Risks/Multi-state models (Multiple Endpoints): 
Andersen PK et al, Int J Epi 2012; Andersen PK & Keiding N, Stat Med 2012 

• Recurrent Events (Repeated occurrences of the same event; e.g. stroke)  
      Cook RJ  & Lawless J, Stat Methods Med Res 2002 

• Relative/Net survival (Disease-specific survival + Unknown death cause)  
      Pohar Perme M, Stare J, Esteve J, Biometrics 2012 

• Interval-censored data (Exact event times unknown; e.g. Cancer recurrence)  
       Joly P et al, Stat Med 2012; Leffondré K et al, Int J Epidemiol 2013 

• Joint Modeling of longitudinal marker (e.g. CD4 cells) and event time: 
       Wang Y & Taylor JMG, J Am Stat Assoc 2001 

Alternative regression models (other than PH & its flexible extensions):  

• Additive Hazards: Martinussen T, Scheike TH, Lifetime Data Anal 2009 

• Accelerated Failure Time (AFT): Zeng D, Lin DY, JASA 2007 



Future Steps: Links with other 
STRATOS Topic Groups 

Links Reflected in this talk (but future collaboration needed): 

• TG2: Variables Selection & Functional Forms  
      (e.g. modeling NL effects; NL/TD effects vs. variable selection) 

• TG6: Diagnostic & Predictive models(e.g. predicting Survival) 

• TG7: Causal Inference (e.g. WCE MSM) 

Future Links (to address Challenges Specific to Survival data): 

• TG1: Missing Data:  (for Time-Varying Covariates?) 

• TG4: Measurement Errors & Misclassification (errors in Time-Varying Covariates; 
Misclassification of Outcomes in Competing Risks; Imprecise Timing of Outcomes 
(Interval-Censored data); Unknown causes of death (Relative Survival)) 

• TG5: Study Design (Optimal Designs for Time-to-Event studies, Implications for 
Analysis)? 

• Simulation Panel (design Complex Time-Varying simulations)  

• Glossary Panel (establish Consistent Unambiguous Terminology) 



CONCLUSIONS 

• Both Time-Varying Covariates & Time-Dependent Effects require 
careful selection of appropriate Statistical Methods to Avoid Biased 
Estimates and/or Incorrect Conclusions 

• Recent, more Flexible Survival Models are able to address these 
challenges and may offer New Insights into Complex Processes 
underlying Disease Occurrence, Progression, Treatment and 
Outcome (that all Evolve over Time)   

• However, Further Challenges need to be addressed (partly by 
Collaboration with other STRATOS TG’s) and clear hands-on 
Guidance for End-users has to be developed (e.g., re: Software)  

 



THANK YOU, VIELEN DANK 

  

             Michal.Abrahamowicz@McGill.ca 
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