Variable selection – a (p)review

Georg Heinze and Daniela Dunkler for TG2

Why a (p)review

- A review: what is the current practice of variable selection in medical research?
- A preview: what should change?

Current practice of variable selection

Table 1 Variable selection methods used in major epidemiologic journals in 2008

Selection technique	America Epidem	an Journal of iology	Epidemiology		European Journal of Epidemiology		International Journal of Epidemiology	
	n	%	\overline{n}	%	n	%	\overline{n}	%
Prior knowledge	50	29	11	28	13	30	9	20
Effect estimate change	31	18	6	15	3	7	4	9
Stepwise selection	27	16	9	23	10	23	13	29
Modern methods (shrinkage, penalized regression)		0	0	0	O	0	0	0
Other (e.g., principal components, propensity scores)	2	1	4	10	1	2	2	4
Not described	61	36	10	25	17	39	17	38
Total	171		40		44		45	

Walter & Tiemeier, EurJEpi 2009 24:733-736

Current practice of variable selection

Variable	JAMA Internal Medicine (IF=14.00)	European Heart Journal (IF=15.05)	Transplant International (IF=2.84)
A. Original articles 2015	137	132	89
B. Multivariable models	94	75	49
C. Variable selection (% of B)	17%	37%	65%
Univariate selection (% of B)	5%	21%	39%
Stepwise methods (% of B)	13%	23%	33%
Univariate filtering, then stepwise selection (% of B)	3%	8%	6%
Stability evaluation	0	0	0
Median sample size (in B)	4,396	4,319	295

Current practice of variable selection

 Modeling the probability for variable selection by journal and sample size:

The 5 myths about variable selection

- 1. The number of variables in a model should be reduced until there are 10 events per variable.
- 2. Only variables with proven univariable-model significance should be included in a multivariable model.
- 3. Non-significant effects should be eliminated from a model.
- 4. P-value quantifies type I error.
- 5. Variable selection simplifies analysis.
- → Probably because of these myths univariate selection is so popular.

Interpretation of regression coefficients

• Linear model:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_K X_k + \epsilon$$

- Adjusted effect of X_k:
- Expected change in outcome, if X_k changes by 1 unit and all other X's stay constant.
- β_k measures the 'independent' effect of X_k .
- Fundamentally different in different models!

Interpretation of regression coefficients

Consider the following models to explain %body fat:

	Parameter Estimates								
Variable	Label		Parameter Estimate		t Value	Pr > t			
Intercept	Intercept	1	-30.36370	11.43150	-2.66	0.0084			
abdomen	Abdomen circumference	1	0.91008	0.07137	12.75	<.0001			
weight_kg	Weight in kg	1	-0.21541	0.06778	-3.18	0.0017			
height_cm	Height in cm	1	-0.09593	0.06171	-1.55	0.1213			

Parameter Estimates							
Variable	le Label DF Parameter Standard Error t Value P						
Intercept	Intercept	1	-14.89166	2.76160	-5.39	<.0001	
weight_kg	Weight in kg	1	0.41950	0.03371	12.44	<.0001	

	Parameter Estimates						
Variable Label Parameter Standard Error t Value Pr					Pr > t		
Intercept	Intercept	1	-47.65873	2.63417	-18.09	<.0001	
abdomen	Abdomen circumference	1	0.97919	0.05599	17.49	<.0001	
weight_kg	Weight in kg	1	-0.29219	0.04655	-6.28	<.0001	

Provided information versus desired knowledge

- Information provided by the data:
 - Number of independent observations N
 - Number of events *E* (logistic: min(#events, #non-events), Cox: #events)
- Amount of knowledge desired:
 - Number of unknown regression coefficients (K)
- Summarized by 'events per variable' EPV = E/K, NPV = N/K.
- Often cited minimum EPV = 10.
- Harrell 2015, p. 72, actually recommends EPV=15 (with no variable selection!)
- Schumacher et al, 2012, recommend EPV=10 to 25

Events Per Variable (EPV)

- But EPV = 10 (or EPV = 15) refers to
 - Number of candidate variables, not variables in the final model.
 - Should be considered as a lower bound!
- Additionally,
 - Non-linearity, interactions, etc. → EPV ↑.
 - Prediction \rightarrow EPV \uparrow (logistic regression EPV 20-50).
 - Modern modeling techniques (e.g. random forests, neural networks, support vector machines) → 10 times EPV compared to logistic regression → EPV ↑↑ (van der Ploeg et al. 2014).

Basic variable selection algorithms

- 'Full' model
- Univariable filtering
- Best subset selection
- Forward selection
- Backward elimination
- Information-theoretic approach
- Directed acyclic graph (DAG)-based selection

The 'full' model

- Means: do not perform any data-driven variable selection.
- Variables should be pre-selected by 'expertise'.
- Select, for each variable, a desired level of non-linearity (including spline transformations).
- Select some biologically plausible interactions.

Univariable filtering

- Still a popular variable selection method in medical literature!
- Select a significance level α (e.g., α =0.20 or α =0.157)
- Perform *K* univariable models.
- Use all variables in multivariable model with univariable p-value < α .
- Sometimes accompanied by subsequent backward elimination.

Pros and cons of univariate selection

- Easy. (You can do that with any software.)
- Retraceable.

a	b	С	Consequence
Pos.	Pos.	Neg.	X_1 falsely not selected (if $a = -bc$)
0	Pos./Neg.	Pos./Neg.	X_1 falsely selected.
Pos./neg	0	Pos./neg	X_1 correctly selected (only if $b=0$ or $c=0$).

→ Univariate selection works only with uncorrelated variables.

Best subset selection

- Perform all 2^K regressions.
- Select the model that has the lowest AIC.

Modification (information-theoretic approach):

- Pre-specify a small number (4-20) of plausible models.
- Select those that have AIC < AIC_{min}+2.
- Perform multi-model inference on the selected models. (Burnham & Anderson, 2002)

In practice:

Approximated by stepwise approaches!

Backward elimination

- Select a significance level α_2 .
- Estimate full model.
- Repeat:
 - While least significant term has $p \ge \alpha_2$, remove it and re-estimate.

Variant: Stepwise backward

- Select α_1 and α_2 .
- Repeat:
 - While least significant term has $p \ge \alpha_2$, remove it and re-estimate.
 - If most significant excluded term has $p < \alpha_1$, add it and re-estimate.

Software:

R mfp:mfp()

Forward selection

- Select a significance level α_1 .
- 'Estimate' a null model.
- Repeat:
 - While the most significant excluded term has $p < \alpha_1$, add it and re-estimate.

Variant: Stepwise forward

- Select α_1 and α_2 .
- Repeat:
 - While the most significant excluded term has $p < \alpha_1$, add it and re-estimate.
 - If least significant included term has $p \geq \alpha_2$, remove it and re-estimate.

Software: SAS/PROC GLMSELECT R step()

Consequences of variable selection

- Variable selection typically leads to:
 - Conditional bias away from 0
 - unconditional bias towards 0
 - Biased conditional inference (p-values too low – CI too narrow)
 - These problems vanish asymptotically (but not yet with EPV = 10)
 - Univariate selection: usually the worst of the algorithmic approaches, and not consistent.
- A tool is needed to check for selection stability.

Quantification of model uncertainty

- Perform bootstrap analysis, repeating variable selection in each resample.
- Evaluate bootstrap inclusion frequencies (BIF) of variables (easy).
- Pairwise inclusion tables (easy).
 (Sauerbrei & Schumacher, 1992)
- Evaluate bootstrap model selection frequencies (moderate).
- Evaluate stability paths (plot BIF vs. α) (intensive).

Case study: body fat approximation

- Johnson's (1996) body fat data example
- Publicly available: http://www.amstat.org/publications/jse/v4n1/datasets.johnson.html
- 251 males aged 21 to 81
- Response variable: %body fat (Siri formula), based on costly underwater density measurement
- Predictors: age, height, weight, +10 circumference measures
- First goal: approximation of %body fat

Case study: correlation of predictors

Case study: selection by backward(AIC) - SAS code

Case study: selection by backward(AIC) - results

run;

R-Square	0.7488
Adj R-Sq	0.7416
AIC	985.02609
AICC	985.77298
SBC	760.22971

Parameter Estimates						
Parameter	DF	Estimate	Standard Error	t Value		
Intercept	1	5.945152	8.149537	0.73		
age	1	0.060301	0.024738	2.44		
height_cm	1	-0.129879	0.047052	-2.76		
neck	1	-0.329725	0.218693	-1.51		
chest	1	-0.135123	0.087549	-1.54		
abdomen	1	0.874948	0.064762	13.51		
forearm	1	0.364969	0.191709	1.90		
wrist	1	-1.729208	0.482605	-3.58		

Case study: bootstrap inclusion frequencies (BIFs)

```
    proc glmselect data=case1.bodyfat plots=all;
    model siri=age weight_kg height_cm neck chest
        abdomen hip thigh knee ankle biceps forearm wrist
        /selection=backward select=aicc;
    modelaverage nsamples=1000;
    run;
```


Effects Selected in at Least 20% of the Samples				
Effect	Selection Percentage			
age	83.20			
weight_kg	32.30			
height_cm	64.10			
neck	60.80			
chest	47.80			
abdomen	100.0			
hip	38.60			
thigh	48.70			
ankle	31.00			
biceps	40.90			
forearm	49.40			
wrist	97.50			

Heinze & Dunkler for TG2, 08-2016: 24

Case study: pairwise inclusion frequencies

```
□proc surveyselect data = case1.bodyfat
     out = bootfat seed = 7123981
     method = urs samprate = 1 outhits rep = 1000;
 run;
□ proc reg data=bootfat noprint outest=estboot;
 by replicate;
 model siri=age weight kg height cm neck chest
       abdomen hip thigh knee ankle biceps forearm wrist
       /selection=backward slstav=0.157;
 run;
∃data estboot;
 set estboot;
                                                  Competitive
 sel age=age ne .;
 sel weight=weight kg ne .;
                                                  selection!
 sel height=height cm ne .;
 sel neck=neck ne .;
 sel chest=chest ne .;
 sel abdomen=abdomen ne .;
 sel hip=hip ne .;
 sel thigh=thigh ne .;
 sel knee=knee ne .;
 sel ankle=ankle ne .;
 sel biceps=biceps ne .;
 sel forearm=forearm ne .;
 sel wrist=wrist ne .;
□proc freq data=estboot;
 tables sel height*sel weight sel thigh*sel biceps;
 run;
```

Frequency	Table of sel_height by sel_weight						
Percent Row Pct		sel_weight					
Col Pct	sel_height	0	1	Total			
	0	122	229	351			
		12.28	22.90	35.10			
		34.76 18.37	65.24 68.16				
	1/	542	107	649			
	'	54.20	10.70	64.90			
	\	83.51	16.49				
		81.63	31.85				
	Total	664	336	1000			
		66.40	33.60	100.00			
Frequency Percent	Table of sel_thigh by sel_biceps						
Row Pct		sel_biceps					
Col Pct	sel_thigh	0	Total				
	0	218	308	526			
		21.80	30.80	62.60			
		41 44 37 91	58.56 72.47	/			
	1	357	117	474			
	' <i>[</i>	35.70	11.70	47.40			
		75.32	24.68				
		62.09	27.53				
		02.00					
	Total	575	425 42.50	1000			

Case study: bootstrap model selection frequencies

Extremely low selection proportio Very unstable sele

Model Selection Frequency								
Tin	nes Selected	Selection Percentage	umber of Effects	Frequency Score	Effects in Model			
	23	2.30	7	23.76	Intercept age height_cm chest abdomen biceps wrist			
	19	1.90	7	19.79	Intercept age height_cm neck abdomen forearm wrist			
	18	1.80	7	18.78	Intercept age height_cm neck abdomen biceps wrist			
	15	1.50	8	15.74	Intercept age height_cm neck chest abdomen biceps wrist			
	14	1.40	9	14.71	Intercept age height_cm neck abdomen hip thigh forearm wrist			
n	5: 14	1.40	10	14.69	Intercept age height_cm neck chest abdomen hip thigh forearm wrist			
cti	ion! 13	1.30	7	13.77	Intercept age height_cm chest abdomen forearm wrist			
ecc	12	1.20	7	12.73	Intercept age weight_kg abdomen thigh forearm wrist			
	12	1.20	9	12.70	Intercept age height_cm neck chest abdomen ankle forearm wrist			
	11	1.10	8	11.75	Intercept age height_cm neck abdomen thigh forearm wrist			
	11	1.10	9	11.70	Intercept age height_cm neck abdomen hip thigh biceps wrist			
	10	1.00	8	10.72	Intercept age neck abdomen hip thigh forearm wrist			
	9	0.90	8	9.75	Intercept age height_cm neck chest abdomen forearm wrist			
	9	0.90	8	9.74	Intercept age height_cm neck abdomen hip thigh wrist			
	9	0.90	9	9.72	Intercept age height_cm neck chest abdomen biceps forearm wrist			
	9	0.90	8	9.71	Intercept age weight_kg neck abdomen thigh forearm wrist			
	9	0.90	8	9.71	Intercept age neck abdomen hip thigh biceps wrist			
	9	0.90	8	9.71	Intercept age height_cm chest abdomen ankle biceps wrist			
	9	0.90	10	9.67	Intercept age height_cm neck chest abdomen ankle biceps forearm wrist			
	8	0.80	6	8.84	Intercept age height_cm neck abdomen wrist			

Preselection of variables

- Prior subject matter knowledge
- Chronology
- Confounder criteria
- Availability at time of model use
- Quality (measurement errors)
- Costs of collecting measurements
- Availability in data set (missing values)
- Variability (rare categories)
- Preselection = Bayes!

Discussion between researcher and statistician!

Prior knowledge: simple illustrative simulations

• Should X₂ be eliminated from the model? (simulation with N = 50)

True $\beta_1 = 1.5, \beta_2 = \mathbf{0.3}$

A weak β_2 :

Setting it to 0 will more often push $\hat{\beta}_1$ towards its true value than away from it.

 \rightarrow Shrinkage effect on $\hat{\beta}_1$!

→ 'Selection is good.'

Prior knowledge: simple illustrative simulations

• Should X_2 be eliminated from the model? (simulation with N = 50)

True
$$\beta_1 = 1.5, \beta_2 = 1.5$$

A strong β_2 :

Setting it to 0 will always push $\hat{\beta}_1$ away from its true value.

Heinze & Dunkler for TG2, 08-2016: 29

The 5 myths: and what should change

1. The number of variables in a model should be reduced until there are 10 events per variable.

Resp: No, there should be >>10 events per candidate variable.

2. Only variables with proven univariable-model significance should be included in a multivariable model.

> Resp: No, univariable-model significance can be strongly misleading as criterion for inclusion in a multivariable model.

3. Non-significant effects should be eliminated from a model.

Resp: No, non-significant effects do not harm a model.

4. P-value quantifies type I error.

Resp: No, P-values after model selection are almost impossible to estimate.

Variable selection simplifies analysis.

Resp: No, stability investigations are needed and must become part of routine software output.

References

- Full tutorial 'Variable selection for statistical models: a review and recommendations for the practicing statistician' with additional references: http://tinyurl.com/variable-selection-talk
- Harrell Jr. FE. Regression modeling strategies. With applications to linear models, logistic regression, and survival analysis. Second edition. Springer: New York, 2015.
- van der Ploeg T, Austin P, C., Steverberg E, W. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Medical Research Methodology 2014; 14: 137.
- Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, 2002.
- Johnson RW. Fitting percentage of body fat to simple body measurements. *Journal of Statistics Education* 1996; 4. http://www.amstat.org/publications/jse/v4n1/datasets.johnson.html
- Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: Application to the Cox regression model. Statistics in Medicine 1992; 11: 2093-2109
- Schumacher M, Holländer N, Schwarzer G, Binder H, Sauerbrei W. Prognostic Factor Studies. In: Crowley J, Hoering A (eds.), Handbook of Statistics in Clinical Oncology, 3rd ed., CRC press: Boca Raton, 2012.
- Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. Journal of Clinical Epidemiology 1996; 49: 907-916.