

Regression without regrets — Initial data analysis to support prediction modelling in observational studies

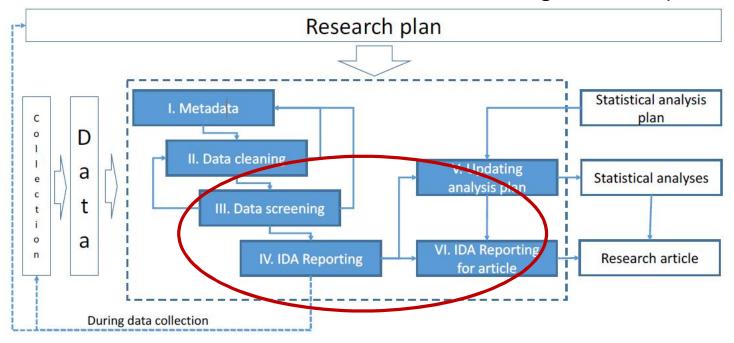
Georg Heinze¹, Marianne Huebner², Mark Baillie³

¹Medical University of Vienna, Vienna, Austria; STRATOS-TG2

²Michigan State University, East Lansing, MI, USA; STRATOS-TG3

³Novartis Pharma AG, Basel, Switzerland; STRATOS-TG3, VP

Credits to Sebastian Hödlmoser¹



What is Initial Data Analysis (IDA)

Huebner et al (2018) defined a framework of IDA consisting of six steps:

Here we concentrate on some aspects relevant for regression modeling.

IDA for regression

- Data screening: provide context about data properties and structures (to avoid pitfalls)
- In order to:
 - Make decisions about updating statistical analysis plan
 - Help interpreting results of regression analyses
 - Guide presenting results of regression analyses

Initial look into the data, but not to generate new hypotheses

Do not yet evaluate predictor-outcome associations

IDA ≠ Exploratory data analysis (EDA)

Can IDA be preplanned?

- A statistical analysis plan should contain IDA aspects
- Various steps can be predefined
- Possible consequences can be defined (if IDA results in ..., I will do ...)
- Aim of this presentation:
 - Describe a generic approach to IDA for regression

Our assumptions and scope

Aspect	Assumptions	Aspect	Assumptions	
Purpose of analysis:	Descriptive or predictive model	Type of analysis:	Regression with one outcome variable	
Type of outcome:	Continuous, binary or count	Number of predictors:	3-50	
Data cleaning:	Completed	Statistical analysis plan:	Exists	
Background knowledge:	Collaboration with domain expert			

Example study

• <u>Aim</u>: diagnostic prediction of bacteremia status

with 50 blood analysis predictors + age

Outcome: binary (bacteremia present or absent)

Sample size: 14,691

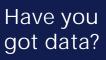
Source: Clin. Dept. of Laboratory Medicine, Vienna General Hospital

Availability: data is publicly available

<u>Publication</u>: Ratzinger F, et al. A Risk Prediction Model for Screening Bacteremic

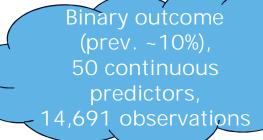
Patients: A Cross Sectional Study. *PLoS ONE* 9(9): e106765.

https://doi.org/10.1371/journal.pone.0106765



How the statistical analysis plan is developed

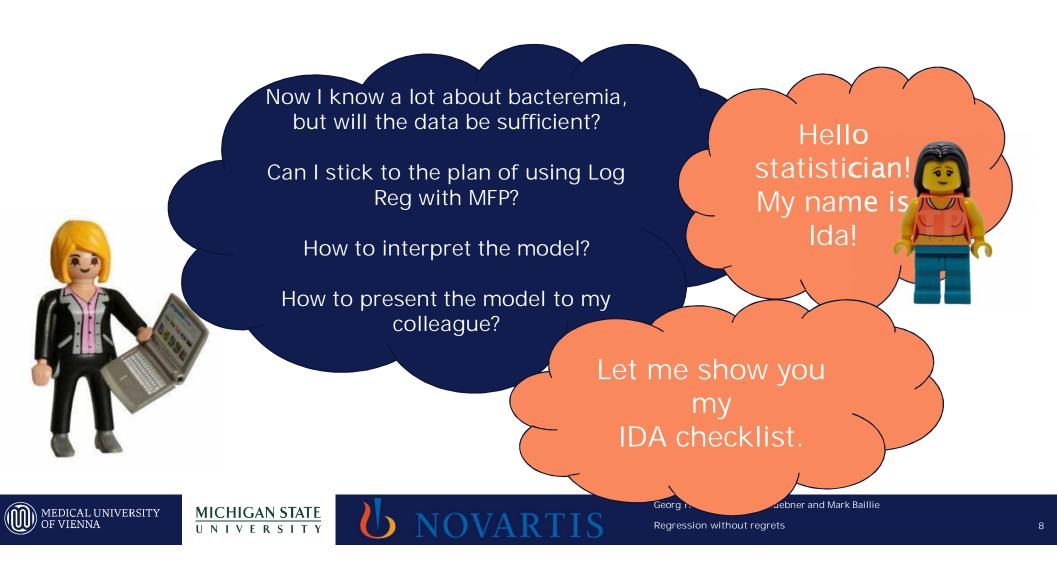
Logistic regression with fractional polynomials!


Which are your key predictors?

Any other important (groups of) predictors?

Structural covariates?

MICHIGAN STATE UNIVERSITY



Acute phase reaction indicators
Kidney function indicators

AGE, SEX, WBC

Prerequisites

A (preliminary) checklist for an initial data analysis plan

Topic	Item	Features				
Prerequisites						
Statistical analysis plan	P1	Check definition of models and roles of variables in the models				
Data dictionary	P2	Check variable labels, definitions, values, units of measurement, type (variables in the SAP)				
Domain expertise	Р3	Identify groups of predictors, expected proportion of missing values, expected distributions of and correlations between predictors, key predictors, structural covariates for IDA				
IDA domain: M	lissing v	values (predictor and outcome variables)				
Prevalence	M1	Provide number and proportion of missing values for each predictor, for the outcome variable and for the analysis as a whole; distinguish by type of missingness, if applicable				
Patterns M2		Investigate patterns of missing values across all variables, either as tables or appropriately visualized				
IDA domain: U	Jnivaria	te analyses (predictors and outcome)				
Categorical variables	U1	Summarize frequency and proportion for each category or with ordinal plots				
Continuous variables U2		Inspect distributions with high-resolution histogram, summary of main quantiles (e.g. 1st, 5th, 25th, 50th, 75th, 90th, 99th), 5 highest and 5 lowest values, mean, first four moments (mean, variance/standard deviation, skewness, curtosis), number of distinct values. Similarly, inspect distributions of transformed variables, if applicable.				
IDA domain: M	Iultivar	iate analyses (predictors only)				
Correlation	V1	Quantify association with pairwise correlation coefficients between all independent variables in a matrix or heatmap				
Association	V2	Visualize the association of each predictor with the structural covariates				
Stratification, if applicable	V3	Compute summary statistics for predictors and visualize distributions stratified by structuring covariates				
Interactions, if applicable V4		Evaluate bivariate distributions of the predictors specified in interactions. Include appropriate graphical displays.				

Prerequisites

Topic	Item	Features
Prerequisites		
Statistical analysis plan	P1	Check definition of models and roles of variables in the models
Data dictionary	P2	Check variable labels, definitions, values, units of measurement, type (variables in the SAP)
Domain expertise	Р3	Identify groups of predictors, expected proportion of missing values, expected distributions of and correlations between predictors, key predictors, structural covariates for IDA

We talked about this before, didn't we?

Domain expertise - examples

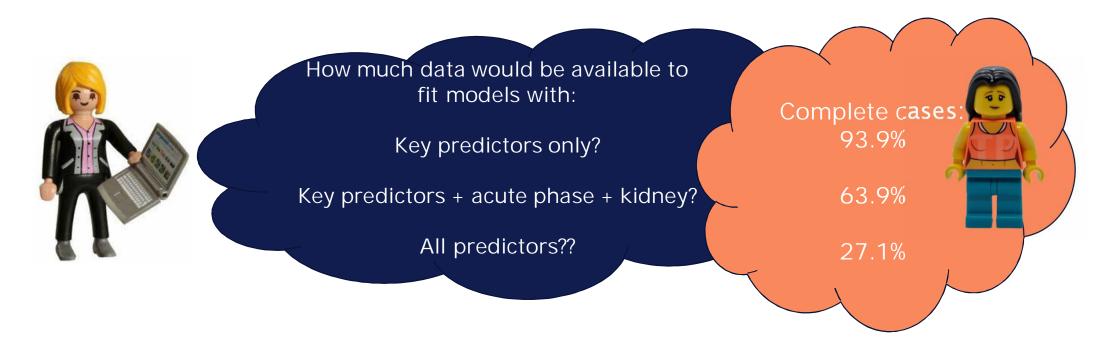
Some more expertise!

- Dependencies between variables:
 - NEU + BASO + EOS + LYM + MONO ≈ WBC
 - NEUR = NEU / (NEU + BASO + EOS + LYM + MONO) etc.

This must give rise to redundancies...

IDA domain: missing values

IDA domain: Missing values (predictor and outcome variables)						
Prevalence	M1	Provide number and proportion of missing values for each predictor, for the outcome variable and for the analysis as a whole; distinguish by type				
Trevalence	IVII	of missingness, if applicable				
Patterns	M2	Investigate patterns of missing values across all variables, either as tables				
rations	1012	or appropriately visualised				
	Missing values - Extensions					
Predictors	ME1	Investigate predictors of missingness (complete vs incomplete cases)				
Occurrence	ME2	Examine levels of occurrence (within a variable, within an individual, for				
Occurrence	WIE2	individuals within strata)				



IDA domain: missing values, examples

Missingness per-variable, per-group, patterns

IDA domain: univariate distributions

IDA domain: Univariate analyses (predictors and outcome)						
Categorical variables	U1	Summarize frequency and proportion for each category or with ordinal plots				
Continuous variables	U2	Inspect distributions with high-resolution histogram, summary of main quantiles (e.g. 1st, 5th, 25th, 50th, 75th, 90th, 99th), 5 highest and 5 lowest values, mean, first four moments (mean, variance/standard deviation, skewness, curtosis), number of distinct values. Similarly, inspect distributions of transformed variables, if applicable.				
Univariate analyses – Extensions						
Sparsity	UE1	Create interactive plots of distributions to inspect sparse ranges or unexpected values				
Levels UE2		Compute summary statistics and describe variation between levels of measurements, e.g. centers, providers, locations				



Univariate distributions

Evaluate/refine exclusion criteria?

Is my model robust against influential points?

Should I winsorize or transform predictors?

Structural variables and key predictors

7 Variables 14691 Observations

WBC: W	NBC: White blood count G/L											
n	missing	distinct	Info	Mean	Gmd	.05	.10	.25	.50	.75	.90	.95
14229	462	2710	1	11.23	7.602	2.66	4.26	6.63	9.60	13.53	18.22	22.27

lowest: 0.00 0.01 0.02 0.03 0.04 , highest: 365.30 383.74 387.73 433.83 604.47

A	AGE: Patient Age years													
	n	missing	distinct	Info	Mean	Gmd	.05	.10	.25	.50	.75	.90	.95	
	14691	0	85	1	56.17	20.78	24	29	43	58	70	79	84	

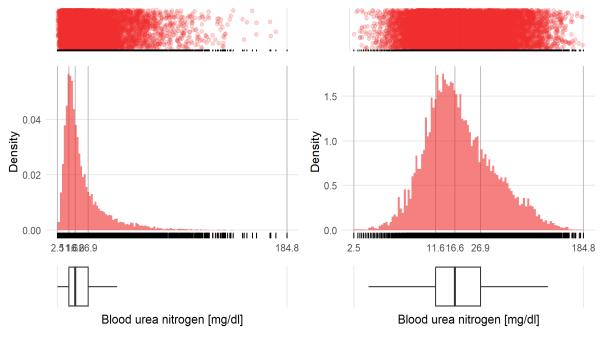
lowest: 16 17 18 19 20 , highest: 96 97 98 99 101

SEX: Patient sex 1=male, 2=female

n	missing	distinct	Info	Mean	Gmd
14691	0	2	0.73	1.419	0.4869

Value 1 2
Frequency 8536 6155
Proportion 0.581 0.419

lowest: 2.5 2.7 2.8 2.9 3.0 , highest: 160.6 171.3 171.9 176.0 184.8



Univariate distributions

Univariate summary of Blood urea nitrogen [mg/dl]

original [left] vs. pseudo-log transformed scale [right]

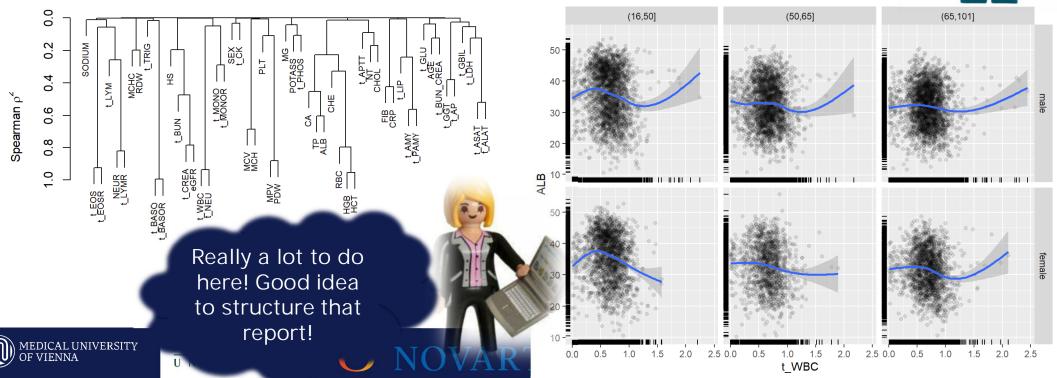
All observed values, the distribution and the, min, max and interquartile range are reported n = 14519 subjects displayed. 172 subjects with missing values are not presented. Pseudo-log transformation is suggested.

But it will change the interpretation of the betas!

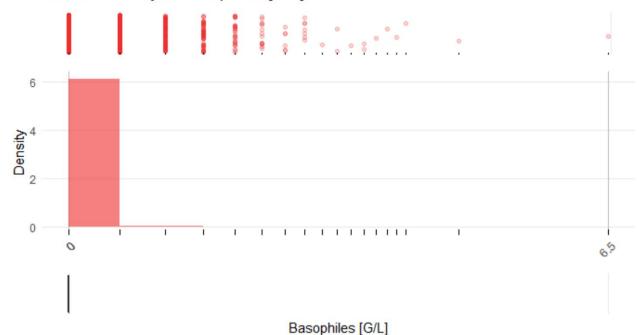
IDA domain: multivariate distributions

IDA domain: Multivariate analyses (predictors only)						
Correlation	V1	Quantify association with pairwise correlation coefficients between all independent variables in a matrix or heatmap				
Association	V2	Visualize the association of each predictor with the structuring covariates				
Stratification, if applicable	V3	Compute summary statistics for predictors and visualise distributions stratified by structuring covariates				
Interactions, if applicable	V4	Evaluate bivariate distributions of the predictors specified in interactions. Include appropriate graphical displays.				
Redundancy	V5	Compute Variance Inflation Factors (or multiple R ² among predictors)				
Multivariate analyses – Extensions						
Correlation	VE1	Compare matrix of Spearman and Pearson correlations coefficients				
Correlation/ Clustering	VE2	Construct a dendrogram to show closely associated predictors				
Redundancy	ridancy VE3 Fit parametric additive models to determine how well each predicted from the remaining covariates					

• Here is where the ,structural covariates' come into play

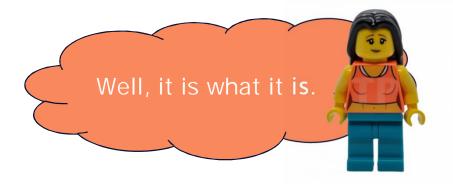

Regression without regrets

IDA domain: multivariate distributions, examples


 Get an overview: need for structuring (not all scatterplots for any pairs of predictors)

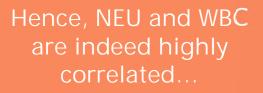
• ALB by WBC (transformed) in six age/sex groups

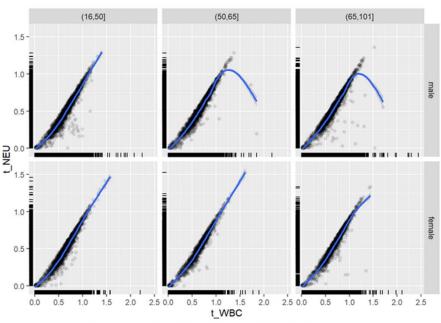
Now we work with some predictors log-transformed (t_XXX)


Univariate summary of Basophiles [G/L]

All observed values, the distribution and the, min, max and interquartile range are reported n=14545 subjects displayed. 146 subjects with missing values are not presented. Using pseudo-log scale.

Transformation does not make that distribution nicer





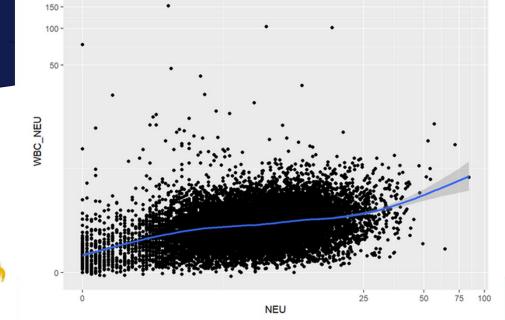
You said that there are components of WBC...

Yes, and NEU is the biggest component of WBC!

Folks, I have an idea.

That was a good one! (see also Gregorich, IJERPH 2021

I'll redefine


WBC_noNEU = WBC - NEU

and use it with NEU in the model.

The correlation should vanish.

And I can still interpret the betas.

You will explain that to me?

I wondered if those transformations affect my functional form selection...

Well they do, but perhaps you don't need to worry about functional forms...

Predictor	Selected functional form without pre-transformation	Selected functional form with log-pre-transformation
WBC_noNEU	Log	Sqrt
NEU	Sqrt	Identity
AGE	Identity	Identity
CREA	1/sqrt	Identity
PLT	Identity	Identity
BUN UNIVERSITY	Identity	Identity

And that thing about missing values. There is multiple imputation...

Be careful! The relative importance of predictors will be different than with complete case analysis!

Now with multiple imputation.
It does a good job for the complete predictors.

Predictor **FDA** CCA MIA 0.386 0.388 Intercept 0.554 WBC noNEU 0.256 0.363 0.256 **NEU** 0.157 0.225 0.157 0.297 0.208 0.210 Age **/**√1.16 0.261 **CREA** 0.201 0.281 **PLT** 0.032 0.046 0.032 BUN 0.185 0.264 0.221

But not for CREA right?

Summary

IDA is the foundation for modeling: it complements domain expertise to support choice of model, its interpretation and presentation

IDA takes time and planning

- BUT: finding problems after modeling takes MORE time and may miss issues (not systematic)
- We provide worked example with code and workflow for this project

IDA needs to be reported in papers

- Transparency, rigor, reproducibility
- Suggestions in Huebner et al, BMC Med Res 2020
- Ten simple rules in Baillie et al, PLoS Comp Biol 2022

References

Comprehensive IDA Framework

Huebner M, le Cessie S, Schmidt CO, Vach W on behalf of STRATOS-TG3. A contemporary conceptual framework for initial data analysis. Observational Studies 2018; 4: 171-192. <u>Link</u>

Ten Simple Rules for IDA

Baillie et al on behalf of STRATOS TG3. Ten simple rules for Initial Data Annalysis. PLoS Comp Biol https://doi.org/10.1371/journal.pcbi.1009819

IDA Reporting

Huebner M, Vach W, le Cessie S, Schmidt C, Lusa L on behalf of STRATOS-TG3. Hidden Analyses: a review of reporting practice and recommendations for more transparent reporting of initial data analyses. BMC Med Res Meth 2020; 20:61. <u>Link</u>

An example

Lusa L, Huebner M. Organizing and Analyzing Data from the SHARE Study with an Application to Age and Sex Differences in Depressive Symptoms. IJERPH 2021;18(18):9684. doi: 10.3390/ijerph18189684.

Workflow: https://www.stratosida.org/

Data set: Ratzinger F, et al PlosOne 2014; Gregorich M et al, IJERPH 2021

Regression without regrets

Remember