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Simulation Panel’s Mission & 
Objective of the Current Study

▪ STRATOS Simulation Panel’s Mission:

Promote more widespread and more accurate use of simulations in both methodological and 
applied statistical research, through enhancing their:

(i) Validity (lack of bias, neutrality) [Boulesteix et al., 2018] 

(ii) Reproducibility (accurate reporting, software availability) [Morris et al., 2019]

(iii) Practical Relevance (plausibility) 

▪ Current Study’s Goal (focus on Applied research): 

To stimulate use of data-driven simulations

to assess the impact of specific imperfections in the available data

on the results of real-world time-to-event analyses
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Outline

▪ Background / Rationale

▪ Overview of the proposed Approach to Data-driven Simulations

▪ 2 Real-World Illustrations:

1) Omitting an important risk factor (potential Confounder) 

2) Imprecise timing of (interval-censored) events associated with a time-varying exposure 

▪ Conclusions
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Background: Need to be more pro-active when 
dealing with imperfections of real-world data

▪ Most real-world clinical/epi papers recognize (in Discussion) some imperfections 
in the available data and/or limitations of the study design that may affect the 
accuracy (or even validity?) of the results

▪ Traditionally, this was limited to a lip service, possibly with vague qualitative 
comments aimed at minimizing the problem**, e.g.:

“Lack of data on disease severity might have affected some of our estimates, but 
similar problems are common to this area of research.” 

** Applies also to many papers co-authored by members of our team ☺
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Background: Main existing approaches
for Quantitative Bias Analysis (QBA)

▪ Recent studies incrementally rely on QBA to get a Quantitative assessment of the 
potential impact of selected common data imperfections (e.g., unmeasured 
confounder or exposure measurement error) [Lash et al., 2009]

▪ 2 main existing Alternative QBA approaches [Banack et al., 2021]:

1) Analytical correction formulas for selected, relatively simple analyses, including e.g. E-values 
for unmeasured confounding [Vanderweele & Ding, 2017], OR 

2) Simulating Synthetic data, with data structure generally similar to the real-world data used 
in a given empirical study
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Limitations of existing QBA approaches

▪ (A) Neither approach accounts fully for the complex Multivariable data structure
actually encountered in a given real-world dataset (relationships of different 
covariates with (i) each other, (ii) exposure, and (iii) outcome)

▪ (B) Not well developed for Time-to-Event analysis (for which the outcome is often 
dichotomized, i.e. Event Times are ignored) [e.g., Barberio et al., 2021]

▪ (C) Not clear if/how to handle Time-Varying Exposures (or time-varying 
covariates) ?
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Main features of Our approach: 
QBA via Data-Driven Simulations

▪ To address limitation (A), we Combine: (A1) Observed Multivariable Real-world data** with 

(A2) Simulating Additional Data items (outcomes and/or covariates) based on carefully defined 

assumptions

▪ To address limitations (B) and/or (C), we rely on the dedicated, validated, “Permutational 

Algorithm” to simulate bivariate survival outcomes (follow-up duration & status) that

(B) copy the observed real-world distribution of the event times, and (C) reflect the assumed 

association(s) with time-varying exposure(s)/covariate(s) [Sylvestre & Abrahamowicz, 2008]

** Note this Contrasts with traditional Methods-driven Simulations (in statistical papers) that often assess or 

compare performance of selected methods across a range of (usually hypothetical) plausible data structures
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Implementation of Data-Driven 
Simulations: Preliminary Steps 1-3 

3 Preliminary Steps:

(see later slides for implementation in 2 illustrative examples)

1) Identify relevant Data Imperfection(s) in your Available Real-World data & (if relevant) carry related 
Initial Data Analyses

2) Perform relevant, usually Multivariable, Analyses of the Available Data to get ‘naïve’ estimates (Not 
corrected for the Imperfection(s) identified in step 1) of the relationships between exposure, outcome, 
and covariates 

3) Based on substantive knowledge and/or literature, Formulate Assumption(s) regarding how the available 
data can be modified or expanded to create the oracle dataset that is corrected for the expected impact 
of the imperfection identified in step 1 **

(** Several plausible alternative scenarios may be considered here, each implying repeating further steps 4-7)
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Implementation of Data-Driven 
Simulations: Main Steps 4-7

Data Simulations & Analyses (Steps 4-6) to be independently repeated across m (e.g., 1000) replications*:

4) Generate the ‘Oracle data’ (Free of the imperfections of interest) that combine relevant empirical 
estimates from step 2 with additional data simulated according to the assumptions from step 3

5) Modify the ‘Oracle data’ from step 4 to account for imperfection(s) identified in step 1

6) Analyze (6a) the ‘Oracle’ and (6b) the Modified (Imperfect) data (from steps 4 and 5, respectively),
using the same methods, and contrast the corresponding results

7) FINAL Step: summarize the results of step 6 across m replications and formulate the Conclusions 
regarding the Impact of the Data Imperfection

* Steps 4-7 must be repeated for each alternative simulated scenario identified in step 3 
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Example # 1: Impact of omitting cancer stage
in a prognostic study of colon cancer mortality

• Goal of the analyses: estimate the independent (adjusted) association of obstruction of 

the colon by a tumour (“exposure”) with all-cause mortality (“outcome”) among 

patients diagnosed with colon cancer.

• Data source: publicly available dataset from the survival R package [Therneau, 2021], with 

N = 906 colon cancer patients, 175 (19.3%) with the colon obstructed, and 441 deaths

during follow-up [Moertel et al., 1995]. Several time-invariant prognostic factors, 

measured at cancer diagnosis, are available, some associated with both (i) obstruction 

exposure and (ii) survival, calling for multivariable analyses.

10Therneau, Survival R package 2021.
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Example # 1: steps 1 - 3

• Step 1 (Imperfection): available data do not include cancer stage at diagnosis, a powerful predictor 

of mortality in colon cancer [Quantin et al, 1999], with higher stage likely associated with both 

obstruction exposure (i.e. potential unmeasured confounder) and some measured covariates

• Step 2 (Naïve analyses): multivariable Cox proportional hazards (PH) model, with adjustments for 

measured covariates (but NOT stage), yields HR = 1.33 for colon obstruction (95% CI: 1.06; 1.68)

• Step 3 (Substantive Assumptions): higher cancer stage at diagnosis (dichotomized: stage III-IV 
versus I-II) assumed to have HR = 4.0 for mortality, and OR = 1.2 for colon obstruction, as well as 
associations with selected measured covariates. 
4 alternative scenarios: with the true HR = 1.0, 1.3, 1.5 or 2.0 for colon obstruction.
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Example # 1: Simulation Methods 
(Step 4: “Oracle data” generation)

• Step 4.1: Across scenarios & 1000 samples use (fixed) real-world data on: 
• (4.1.1) 906 multivariable X vectors (exposure + measured covariates)

• (4.1.2) Outcomes: Times of 441 events (deaths) + 465 censorings

• Step 4.2: {Stage | exposure, covariates} generated independently in each sample, based on ORs 
assumed in step 3

• Step 4.3: Use Permutational Algorithm to assign each of the events or censoring obs. (with times 
from 4.1.2) to one of the 906 ‘expanded’ X vectors (from 4.1.1 + Stage from 4.2) based on the 
‘true’ PH model, with: 

(i) Assumed HRs for Stage and Obstruction, specified in step 3; and 

(ii) For measured covariates: ‘empirical’ adjusted HRs estimates from step 2
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Example 1: Observed & Simulated
Data Structure
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Example # 1: Steps 5 - 7

• Step 5 (Modifying Oracle data to Insert the Imperfection):
each of m samples simulated in step 4 modified by Deleting “Stage”

• Step 6 (Analyses of (6a) Oracle vs (6b) Imperfect data):
multivariable Cox PH models, with Colon Obstruction & all Measured    
Covariates, Only Difference: Stage (6a) Included vs. (6b) Stage Excluded

• Step 7 (Summarizing the results): 
focus on BIAS (Mean of 1000 Estimates – True) in Adjusted log (HR) for Colon 
Obstruction: (6a) vs. (6b)
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Example # 1: BIAS in log(HR) for Obstruction as a 
function of ‘true’ HR: Oracle vs. Imperfect data
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Example # 1: Conclusions

• Lack of data on Cancer Stage has likely only a minor impact on the accuracy of 
the adjusted log(HR) for Colon Obstruction 
(absolute Bias < 0.1, coverage rate of 95% CI: ≥ 90%)

• Expected Bias varies depending on the strength of the (assumed) true 
association**:

➢ (i) Slight over-estimation of null or weak effects (1 ≤ HR ≤ 1.3) versus

➢ (ii) Slight under-estimation of stronger effects (HR ≥ 1.5)

** Due to a Combination of (i) Unmeasured Confounding (OR = 1.2 for Stage-
Obstruction) vs. (ii) Non-Collapsibility (HR = 4.0 for omitted Stage) 
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Example # 2: Association of a Time-Varying exposure
with an (imprecisely timed) Interval-Censored event

• Goal of the analyses: estimate the association of recent benzodiazepine use with 

cognitive impairment

• Data source: synthetic data based on real-world time-varying patterns of 

benzodiazepine use [Bartlett et al., 2004], with N= 1250 new benzodiazepine users

generating 285 (23%) events of cognitive impairment during up to 3 years of follow-up. 

2 measured time-invariant covariates: sex and age. Binary Time-Varying Exposure (TVE) 

= Any Benzodiazepine use in the last 2 weeks.
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Example # 2: Steps 1 - 3

• Step 1 (Imperfection): an event of cognitive impairment is detected only at the time of the first 

clinic visit after its actual occurrence, so the actual event times remain unknown, resulting in 

Interval-Censored events (see Next Slide for Implications for TVE analyses)

• Step 2 (Naïve analyses): 2 Cox PH models (adjusted for age & sex), with alternative Event Times 

Imputation: 

(i) @ END of the Interval (visit when event ‘detected’): HR(TVE) = 1.2; (95%CI: 0.87-1.68)  vs.

(ii) @ MID-Point of the Interval (between 2 adjacent visits): HR(TVE) = 1.47; (95%CI: 1.09-2.00) 

• Step 3 (Substantive Assumptions): True (UN-known) event equally likely to occur at any time 

within the between-visit interval at the end of which it was detected.

4 alternative scenarios: with HR = 1.0, 1.5, 2.0 or 2.5 for TVE (recent benzodiazepine use)
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Impact of inaccurate timing of interval-censored events 
on the associated ‘current’ values of time-varying exposure

Illustration of the impact of inaccurate timing of interval-censored events for a hypothetical subject: the time-varying exposure metric 
“any use in the last 2 weeks” value differ between the true event time (exposure = yes) and the imputed event time (exposure = no) 
at the middle of the intervals between the visits when the event was detected and the preceding visit.
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Example # 2: Steps 4 - 6 

• Step 4: (“Oracle data” generation):

• (4.1) Across scenarios & 1000 samples use (fixed) observed data on: 
1250 TVE time-vectors (daily benzo use) with corresponding age & sex

• (4.2) “True” Time of event i = 1,...,285 generated (independently for each of m samples) from
Uniform U ~ [ti,(j-1) ; ti,j] over the interval between the earlier visit ti,(j-1) and visit ti,j when it was 
detected

• (4.3) Use Permutational Algorithm to assign each of the events obs. (with times from 4.2) to one of 
the TVE vectors (from 4.1) based on the ‘true’ PH model, with: (i) assumed HR for TVE (from step 3) 
and (ii) empirical HR estimates for age and sex (from step 2)

• Step 5: (Inserting the Imperfection): Exact (‘true’) event times were Deleted and only the times of the 
visits when events were detected were reported

• Step 6: (Analyses): 3 multivariable Cox models: (6a) Oracle data (True event times) vs. (6b) Event Times 
Imputed (Imperfect data) at: (6b1) End (detection visit) or (6b2) Mid-point of the interval [ti,(j-1) ; ti,j]
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Example # 2: BIAS in log(HR) for TVE as a function 
of ‘true’ HR: Oracle vs. Imputation @: MID vs END
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Example # 2: 
Summary of Results & Conclusions

• (i) Imprecise Timing of the events (transient Cognitive Impairment) induces considerable Bias to 
the Null in the estimated HR for the Time-Varying Exposure (recent use of Benzodiazepines)

• (ii) Bias is systematically stronger for Imputing the events at the End (~ 35-40% relative bias)
than at the Mid-point (~ 25% relative bias) ** of the interval between the adjacent visits

(** Also, Root Mean Squared Error (RMSE) of End-imputed estimates is 20%-30% higher than for 
Mid-point-imputed estimates

• (iii) Given (i) & (ii), the ‘naïve’ estimate based on Mid-point Imputation of event times [HR = 1.47
(95%CI: 1.09-2.00)] provides a solid evidence of Risk Increase associated with a recent 
Benzodiazepines use but likely Underestimates its strength !
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Conclusions

• Carefully designed Data-Driven Simulations can provide valuable insights 
regarding the expected impact of a specific Data Imperfection or Design 
Limitation on the results and conclusions of a particular Real-World study 

• Our methods extend the QBA toolbox to address complexities of:
➢ Multivariable data structures

➢ Time-to-Event (Survival) analysis

➢ Time-Varying Exposures/Covariates

but further real-world applications are necessary to fully assess their practical 
usefulness/potential…
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Thank you!

Michal.Abrahamowicz@McGill.ca
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