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• Typical situation: Several variables, mix of continuous and (ordered) categorical variables

• Aim of a study has strong influence on the analysis strategy

• Three conceptual modelling approaches: 

• Explanatory,  descriptive, predictive

• Interest here: descriptive model (aims to capture the data structure parsimoniously)

• Main issues: (similar in different types of regression models )

• Which variables to include? Which functional forms for continuous variables? 

• Use subject-matter knowledge for modelling... but for some variables, data-driven 
choice inevitable

TG2 Focus: Observational Studies – Regression models



• Variable selection in the presence of non-linear relationships of covariates is an even more 
complicated exercise. In fact, decisions regarding the inclusion/exclusion of specific variables 
and modelling of the functional forms of both these variables and potential confounders 
may depend on each other in a complex way.

Variable selection & choice of functional forms



Do we need variable selection?

• …guided by principles such as the need for interpretability, reproducibility and 
transportability, we prefer a simple model unless the data indicate the need for 
greater complexity.  (Royston & Sauerbrei, 2008)

• (variable selection)… from a pragmatic point of view, aims at determining 
which covariates have the strongest effects on the response of interest, 
whereas from a statistical perspective it represents a means to achieve balance 
between goodness of fit and parsimony. By effectively identifying a subset of 
important covariates we can both enhance model interpretability and improve 
prediction accuracy.  (Marra & Wood, 2012)



Fractional polynomial models



Function Selection Procedure and Multivariable FP

•

df p-value

Any effect? 
Best FP2 versus null 4

Linear function suitable?
Best FP2 versus linear 3

FP1 sufficient?
Best FP2 vs. best FP1 2

• Combine backward elimination of weak 
variables with search for best FP functions

• Determine fitting order from full linear 
model

• Apply FSP selection procedure to each X in 
turn, fixing functions (but not βs) for other 
X’s

• Cycle until FP functions (i.e. powers) and 
variables selected do not change

• Significance level may be different for the 
two parts – selection of variables (α2) and 
selection of variable forms (α1) 

FSP



Splines are also simple polynomials
• Set of piecewise polynomials, each of degree d

• Joined together at a set of knots τ1, …, τκ

• Continuous in value and sufficiently smooth at the knots

A

A restricted cubic regression spline is defined by:

being a cubic function between the set of fixed knots τ1, …, τκ

being a linear function for x < τ1 and x > τκ

being continuous with continuous first and second derivative

Natural Splines are restricted cubic splines with cubic b-splines 
as functions between knots



Restricted Cubic Splines  and Multivariable Regression 
Splines (MVRS)

Df p-value

Any effect? 
Best df(m) versus null m+1

Linear function suitable?
Best df(m) versus linear m

df(m) needed?
Best df(m) vs. df(1)

….
m-1

…

• Determine the most complex model in terms of knots 
“df(m)”;  m often depends on sample size; knots are 
chosen at predetermined percentiles of distribution of 
x; deviance difference as criteria; determine significance 
level α1

• Predictors are considered in decreasing 
order of significance in a full linear model

• The algorithm cycles over the predictors, 
updating the model 

• Procedure terminates when no further 
variables included in the model and df
for splines are chosen  for continuous 
variables

• Royston, Sauerbrei suggested df(m=4,8)
• Procedure can be easily adapted to other 

spline bases, eg b-splines, natural splines
• MVSS also suggested for cubic smoothing 

splines (based on edf)

SSP



Generalised additive models and mgcv
A generalised additive model GAM (Hastie and Tibshirani 1990) connects a response Yi to linear components and 
smooth functions: 

𝑔 𝐸 𝑌𝑖 = 𝑋𝑖𝜃 +

𝑗

𝑓𝑗(𝑥 𝑖𝑗 )

Where  g(.) a prespecified link functions,  Xi a linear component of the model and 𝑓𝑗 some smooth functions. 

.Example: eigen based spline “tp” Example: P-splines “ps”



Practical Variable Selection for GAMs
Penalised maximum likelihood estimation can be used to control overfit. 

In practice a GAM is fitted by iterative minimisation of: 

𝑊 𝑘 𝑧 𝑘 − 𝑋𝛽
2

+

𝑗

𝜆𝑗𝛽
𝑇𝑆𝑗𝛽,𝑤𝑟𝑡 𝛽

Large values of 𝝀𝒋 will control smooth term but will not force it out of the model. 

Double Penalty

𝜆𝑗𝛽
𝑇𝑆𝑗𝛽 + 𝜆𝑗

∗𝛽𝑇 𝑆𝑗
∗β

Any spline type smoother can be decomposed into two 
component functions: a component in the range space of 
the penalty (𝛌) and a component in the null space of 
penalty (𝛌∗). 
As an example, when using a cubic spline penalty  large 𝜆
values would force spline towards a linear form and 𝜆∗

would penalise straight line components to zero. 

Shrinkage approach

Replace smoothing penalty matrix 𝑆𝑗with 
ሚ𝑆𝑗 = 𝑈𝑗 ෪Λ𝑗 𝑈𝑗

𝑇

where 𝑈𝑗 is an eigenvector matrix associated with j smooth 

function and  ෪Λ𝑗 a corresponding diagonal eigenvalue matrix 

except for the zero eigenvalues replaced  by ε, a small 
proportion of the smallest strictly positive eigenvalues of S. 

This forces eigenvalues of ሚ𝑆𝑗 associated with the penalty null 

space to be different from zero. 

(Marra & Wood, Comp Stat & Data Analysis 2011)   



Prediction of diabetes onset

• Dataset from an investigation of potential 
predictors for the onset of diabetes in a cohort 
of 768 female Pima Indians, of whom 268 
developed diabetes. 

• Response: binary outcome diabetes (0/1)
• Continuous Predictors: number of times 

pregnant, plasma glucose concentration, 
diastolic blood pressure, triceps skin fold 
thickness,  serum insulin, diabetes pedigree 
function, bmi and age

• Substantial missing values imputed once by ice 
in STATA

Set available in http://biom131.imbi.uni-
freiburg.de/biom/Royston-Sauerbrei-
book/#datasets

• Mayo Clinic trial in PBC conducted between 
1974 and 1984.  A total of 312 PBC patients 
randomized in a placebo controlled trial of the 
drug D-penicillamine. 

• Response: Survival time, 125 deaths
• Continuous Predictors: age, serum albumin, 

serum bilirunbin, serum cholesterol, urine 
copper, triglycerides 

• Categorical/Ordinal: presence of ascites, 
spiders (malformations of the skin), edema (no, 
untreated or treated) histological stage of 
disease 

Set available in R

Survival of PBC patients

Datasets

http://biom131.imbi.uni-freiburg.de/biom/Royston-Sauerbrei-book/#datasets


Models

MFP MVRS NS TS1 TS2 PS

function Fractional 
polynomials

Natural 
splines

Natural 
splines

Thin plate 

regression 

splines

Thin plate 

regression 
splines

P-splines

maximum
df

4 df (2FPs) 5 9 9 9 9

variable 
selection

BE + FSP BE + SSP shrinkage shrinkage double 
penalty

double 

penalty

R library mfp script mgcv mgcv mgcv mgcv



Results extract (PIMA data)

mfp

mfp(formula = Outcome ~ fp(Pregnancies, df

= 4) + …+ fp(Age, df = 4), family = 

"binomial",     select = 0.01)

df.init slct alpha df.final pw1   pw2

Glucose 4   0.01  0.05   1       1      .

BMI     4   0.01  0.05   2      -2      .

Pregn 4   0.01  0.05   0       .      .

Diab    4   0.01  0.05   1       1      .

Age     4   0.01  0.05   4       0      3

Blood   4   0.01  0.05   0       .      .

Skin    4   0.01  0.05   0       .      .

Insuln 4   0.01  0.05   0       .      .

mgcv

gam(Outcome ~ s(Pregnancies,bs = 'tp') + 

s(Age,bs = 'tp'), family = "binomial", 

select= TRUE, method="REML")

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value    

s(Glucose)        0.989  9 89.347 < 2e-16

s(BMI)            3.665  9 30.695 < 2e-16

s(Pregnancies)    1.106  9  2.903 0.06618   

s(DiabetesPed)    1.677  9  9.814 0.00183

s(Age)            3.098  9 28.168 < 2e-16

s(BloodPressure)  0.000  9  0.000 0.42658    

s(SkinThickness)  0.000  9  0.000 0.99424    

s(Insulin)        0.099  9  0.108 0.30852    



Variables included 
All approaches seem to agree 

on variable inclusion bar MVRS 

that also included pregnancies .



Functional Forms 

- - - PS Confidence intervals



PBC data

Methods disagree on inclusion



Functional forms

- - - PS Confidence intervals



Prediction error

• 100 bootstrap samples for each dataset, leave 10% out for each sample. 

PIMA data PBC data 



Simulation 

f(x1)

f(x2)

200 iterations of n normal responses
• n = 400, n=1200 

8 continuous covariates
• 5 known functions (right) and 3 spurious (x4-x6)

2 binary covariates
• 1 spurious (x7), 1 related to outcome (0.72*x8)

y= f(x0)  + f(x1) + f(x2) + f(x3) + 0.72* x8 + f(x9) + ε

Very limited setting similar to Gu and Wahba 
(four univariate term example, from function gamSim in mgcv)
More interesting simulations to follow, with correlated variables, 
and more features. 



n = 400

X  FP  PS  TS  TP  CS

x0 200 200 200 200 200

x1 200 200 200 200 200

x2 200 200 200 200 200

x3 18  30   7  20  16

x4  11  25   3  17  16

x5  18  34   4  23  12

x6  19  27   3  16   8

x7  29  33  33  32  33

x8 178 193 192 192 192

x9 140 139 130 143 132 

Low power and BIC:

linear function selected 



n=1200

FP  PS  TS1  TS2 CS

x0 200 200 200 200 200

x1 200 200 200 200 200

x2 200 200 200 200 200

x3 42  47  19  40  47

x4  27  29   2  15  12

x5  23  29   6  14  12

x6  13  25   3  11   6

x7  32  31  33  34  33

x8 200 200 200 200 200

x9 199 199 199 199 199



Discussion

• Choice of parameters can alter effects (significance levels, AIC/BIC for MFP, maximum df
for splines, choice of penalty, knots, etc). All results here produced at software default. 

• In agreement with Royston & Sauerbrei (2008), MFP and spline approaches provide roughly 
comparable models.

• Approaches where closer in logistic regression setting with a fair sample size of 768 
observations. Differences were more obvious in smaller sample size (survival model).  

• MSE from all models showed little difference between approaches. However, main interest 
here is in models for description.

• In simulated data, where more flexibility is required, FP(2) may not be enough. Equally,  
penalised splines will not always correctly identify a linear relationship. 

• Penalised approaches (double penalty) can be computationally expensive but can still 
handle moderate sample sizes. 

• Limitation: simple simulation setting, small number of non-correlated variables. 
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