Comparison of Multivariable Fractional Polynomials with Splines and Penalised Splines

Aris Perperoglou¹, Daniela Dunkler², Matthias Schmid³ and Willi Sauerbrei⁴ for STRATOS TG2

¹Newcastle University, UK
 ²Medical University of Vienna, Austria
 ³Institute for Medicine Biometry, Informatics and Epidemiology, Bonn, Germany
 ⁴University of Freiburg, Germany

Outline

- Observational studies
- Variable selection with Fractional polynomials, Spline approaches and Penalised methods
- Application to PIMA & PBC data
- Simulations
- Discussion

TG2 Focus: Observational Studies – Regression models

- **Typical situation:** Several variables, mix of continuous and (ordered) categorical variables
- Aim of a study has strong influence on the analysis strategy
- Three conceptual modelling approaches:
 - Explanatory, descriptive, predictive
- Interest here: **descriptive model** (aims to capture the data structure parsimoniously)
- Main issues: (similar in different types of regression models)
- Which variables to include? Which functional forms for continuous variables?
- Use subject-matter knowledge for modelling... but for some variables, data-driven choice inevitable

Variable selection & choice of functional forms

State of the art in selection of variables and functional forms in multivariable analysis outstanding issues

<u>Willi Sauerbrei</u> [⊡], <u>Aris Perperoglou</u>, <u>Matthias Schmid</u>, <u>Michal Abrahamowicz</u>, <u>Heiko Becher</u>, <u>Harald Binder</u>, <u>Daniela Dunkler</u>, <u>Frank E. Harrell Jr</u>, <u>Patrick Royston</u> & <u>Georg Heinze</u> for TG2 of the STRATOS initiative</u>

Diagnostic and Prognostic Research **4**, Article number: 3 (2020) <u>Cite this article</u>

 Variable selection in the presence of non-linear relationships of covariates is an even more complicated exercise. In fact, decisions regarding the inclusion/exclusion of specific variables and modelling of the functional forms of both these variables and potential confounders may depend on each other in a complex way.

Do we need variable selection?

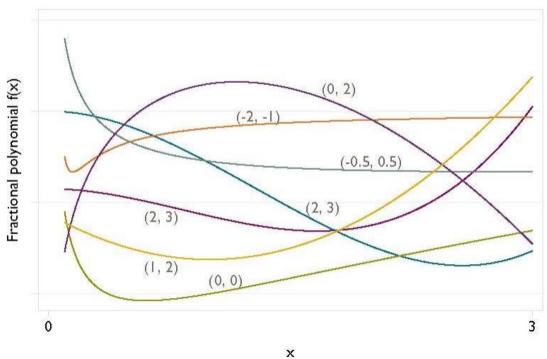
- ...guided by principles such as the need for interpretability, reproducibility and transportability, we prefer a simple model unless the data indicate the need for greater complexity. (Royston & Sauerbrei, 2008)
- (variable selection)... from a pragmatic point of view, aims at determining which covariates have the strongest effects on the response of interest, whereas from a statistical perspective it represents a means to achieve balance between goodness of fit and parsimony. By effectively identifying a subset of important covariates we can both enhance model interpretability and improve prediction accuracy. (Marra & Wood, 2012)

Fractional polynomial models

- Describe for one covariate, X
- Fractional polynomial of degree *m* for *X* with powers $p_1, ..., p_m$ is given by $FPm(X) = \beta_1 X^{p_1} + ... + \beta_m X^{p_m}$
- Powers *p*₁,..., *p*_m are taken from a special set {-2, -1, -0.5, 0, 0.5, 1, 2, 3}
- Usually m = 1 or m = 2 is sufficient for a good fit
- Repeated powers (p₁=p₂)

 $\beta_1 X^{p_1} + \beta_2 X^{p_1} \log X$

• 8 FP1, 36 FP2 models



Function Selection Procedure and Multivariable FP

FSP

 Define most complex function allowed, common choice FP2; deviance difference as the criteria; determine significance level α₁

	df	p-value
Any effect? Best FP2 versus null	4	
Linear function suitable? Best FP2 versus linear	3	
FP1 sufficient? Best FP2 vs. best FP1	2	

- Combine backward elimination of weak variables with search for best FP functions
- Determine fitting order from full linear model
- Apply FSP selection procedure to each X in turn, fixing functions (but not βs) for other X's
- Cycle until FP functions (i.e. powers) and variables selected do not change
- Significance level may be different for the two parts selection of variables (α_2) and selection of variable forms (α_1)

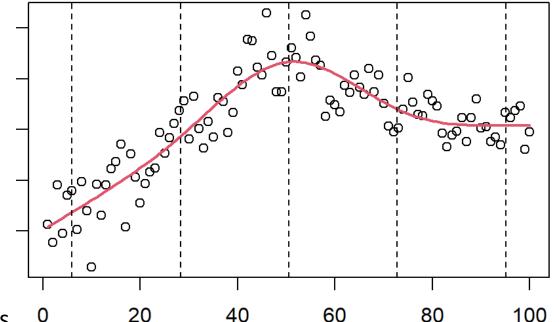
Splines are also simple polynomials

- Set of piecewise polynomials, each of degree d
- Joined together at a set of knots $\tau_1, ..., \tau_{\kappa}$
- Continuous in value and sufficiently smooth at the knots

A restricted cubic regression spline is defined by: being a cubic function between the set of fixed knots $\tau_1, ..., \tau_{\kappa}$ being a linear function for $x < \tau_1$ and $x > \tau_{\kappa}$

being continuous with continuous first and second derivative

Natural Splines are restricted cubic splines with cubic b-splines ⁰ as functions between knots



A review of spline function procedures in R

<u>Aris Perperoglou</u> [,] <u>Willi Sauerbrei</u>, <u>Michal Abrahamowicz</u> & <u>Matthias Schmid</u>

BMC Medical Research Methodology 19, Article number: 46 (2019) Cite this article

Restricted Cubic Splines and Multivariable Regression Splines (MVRS)

SSP

 Determine the most complex model in terms of knots "df(m)"; m often depends on sample size; knots are chosen at predetermined percentiles of distribution of x; deviance difference as criteria; determine significance level α₁

	Df	p-value
Any effect? Best df(m) versus null	m+1	
Linear function suitable? Best df(m) versus linear	m	
df(m) needed? Best df(m) vs. df(1)	m-1	

- Predictors are considered in decreasing order of significance in a full linear model
- The algorithm cycles over the predictors, updating the model
- Procedure terminates when no further variables included in the model and df for splines are chosen for continuous variables
- Royston, Sauerbrei suggested df(m=4,8)
- Procedure can be easily adapted to other spline bases, eg b-splines, natural splines
- MVSS also suggested for cubic smoothing splines (based on edf)

Generalised additive models and mgcv

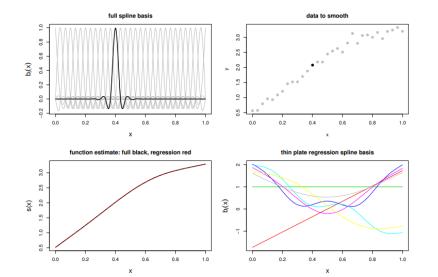
A generalised additive model GAM (Hastie and Tibshirani 1990) connects a response Y_i to linear components and smooth functions:

$$g\{E(Y_i)\} = X_i\theta + \sum_i f_j(x_{\{ij\}})$$

Where g(.) a prespecified link functions, X_i a linear component of the model and f_j some smooth functions.

Example: eigen based spline "tp"

The "tp", *thin plate regression spline* basis is an eigen approximation to a thin plate spline (including cubic spline in 1 dimension).



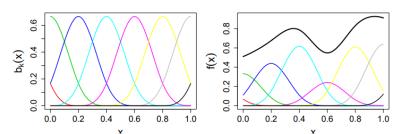
Example: P-splines "ps"

- Eilers and Marx have popularized the use of B-spline bases with discrete penalties.
 - If $b_k(x)$ is a B-spline and β_k an unknown coefficient, then

$$f(x) = \sum_{k}^{K} \beta_{k} b_{k}(x).$$

Wiggliness can be penalized by e.g.

$$\mathcal{P} = \sum_{k=2}^{K-1} (\beta_{j-1} - 2\beta_j + \beta_{j+1})^2 = \beta^{\mathrm{T}} \mathbf{S} \beta.$$



Practical Variable Selection for GAMs

Penalised maximum likelihood estimation can be used to control overfit. In practice a GAM is fitted by iterative minimisation of:

$$\left|\sqrt{W^{[k]}}(z^{[k]} - X\beta)\right|^2 + \sum_i \lambda_j \beta^T S_j \beta$$
, wrt β

Large values of λ_i will control smooth term but will not force it out of the model.

(Marra & Wood, Comp Stat & Data Analysis 2011)

Double Penalty

$$\lambda_{j}\beta^{T}S_{j}\beta + \lambda_{j}^{*}\beta^{T}S_{j}^{*}\beta$$

Any spline type smoother can be decomposed into two component functions: a component in the range space of the penalty (λ) and a component in the null space of penalty (λ^*).

As an example, when using a cubic spline penalty large λ values would force spline towards a linear form and λ^* would penalise straight line components to zero.

Shrinkage approach

Replace smoothing penalty matrix S_j with $\tilde{S}_j = U_j \tilde{\Lambda}_j U_j^T$ where U_j is an eigenvector matrix associated with j smooth function and $\tilde{\Lambda}_j$ a corresponding diagonal eigenvalue matrix except for the zero eigenvalues replaced by ε , a small proportion of the smallest strictly positive eigenvalues of S. This forces eigenvalues of \tilde{S}_j associated with the penalty null space to be different from zero.

Datasets

Prediction of diabetes onset

- Dataset from an investigation of potential predictors for the onset of diabetes in a cohort of 768 female Pima Indians, of whom 268 developed diabetes.
- **Response:** binary outcome diabetes (0/1)
- **Continuous Predictors:** number of times pregnant, plasma glucose concentration, diastolic blood pressure, triceps skin fold thickness, serum insulin, diabetes pedigree function, bmi and age
- Substantial missing values imputed once by ice in STATA

Survival of PBC patients

- Mayo Clinic trial in PBC conducted between 1974 and 1984. A total of 312 PBC patients randomized in a placebo controlled trial of the drug D-penicillamine.
- **Response**: Survival time, 125 deaths
- Continuous Predictors: age, serum albumin, serum bilirunbin, serum cholesterol, urine copper, triglycerides
- Categorical/Ordinal: presence of ascites, spiders (malformations of the skin), edema (no, untreated or treated) histological stage of disease

Set available in <u>http://biom131.imbi.uni-</u> <u>freiburg.de/biom/Royston-Sauerbrei-</u> book/#datasets Set available in R

Models

	MFP	MVRS	NS	TS1	TS2	PS
function	Fractional polynomials	Natural splines	Natural splines	Thin plate regression splines	Thin plate regression splines	P-splines
maximum df	4 df (2FPs)	5	9	9	9	9
variable selection	BE + FSP	BE + SSP	shrinkage	shrinkage	double penalty	double penalty
R library	mfp	script	mgcv	mgcv	mgcv	mgcv

Results extract (PIMA data)

mfp

```
mfp(formula = Outcome ~ fp(Pregnancies, df
= 4) + ...+ fp(Age, df = 4), family =
"binomial", select = 0.01)
```

df.ir	nit	slct	alpha	df.final	pw1	pw2
Glucose	4	0.01	0.05	1	1	•
BMI	4	0.01	0.05	2	-2	•
Pregn	4	0.01	0.05	0	•	•
Diab	4	0.01	0.05	1	1	•
Age	4	0.01	0.05	4	0	3
Blood	4	0.01	0.05	0	•	•
Skin	4	0.01	0.05	0	•	•
Insuln	4	0.01	0.05	0	•	•

mgcv

```
gam(Outcome ~ s(Pregnancies,bs = 'tp') +
s(Age,bs = 'tp'), family = "binomial",
select= TRUE, method="REML")
```

Approximate significance of smooth terms:

```
edf Ref.df Chi.sq p-value
```

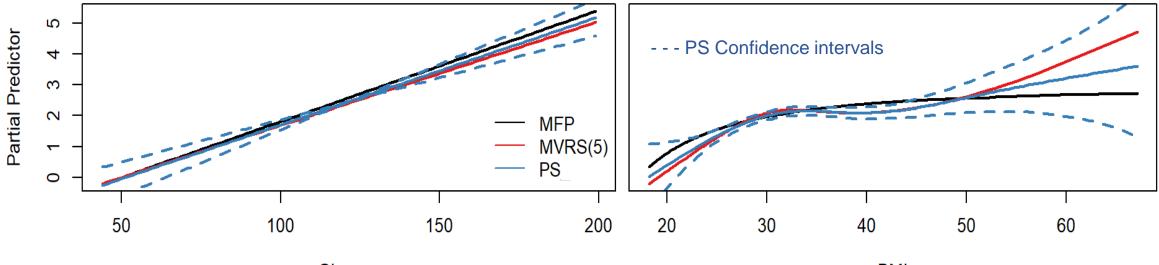
s(Glucose)	0.989	9	89.347	< 2e-16
s(BMI)	3.665	9	30.695	< 2e-16
s(Pregnancies)	1.106	9	2.903	0.06618
s(DiabetesPed)	1.677	9	9.814	0.00183
s(Age)	3.098	9	28.168	< 2e-16
s(BloodPressure)	0.000	9	0.000	0.42658
s(SkinThickness)	0.000	9	0.000	0.99424
s(Insulin)	0.099	9	0.108	0.30852

Variables included

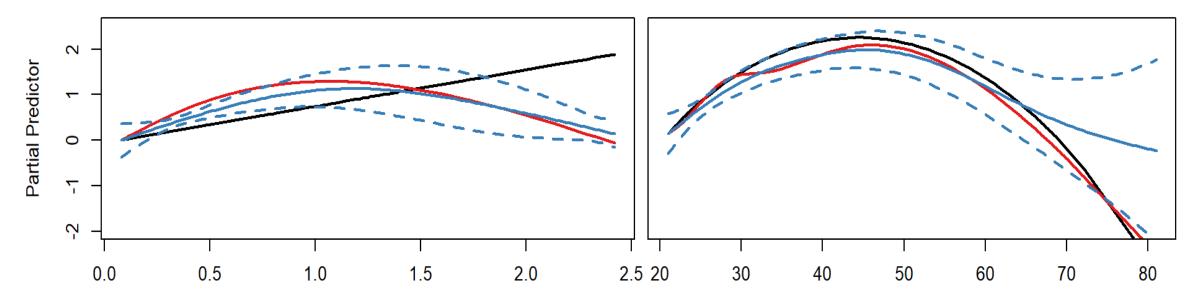
All approaches seem to agree on variable inclusion bar MVRS that also included pregnancies.

Variables	MFP(2)	MVRS(5)	TS_1	TS_2	PS_2	NS
	power	df	edf	edf	edf	edf
Glucose	lin	1	1.3	1.0	1.0	2.1
BMI	-2	5	3.7	3.9	3.7	3.7
Pregnancies	-	1	0.6	0.6	0.5	0.6
Diabetes	lin	2	0.9	1.8	1.4	1.6
Age	-2	5	3.0	2.9	2.7	3.0
Systolic	-	-	0.0	0.1	0.1	0.1
Biceps	-	-	0.0	0.0	0.0	0.0
Insulin	-	-	0.0	0.0	0.5	0.0

Functional Forms



Glucose



Diabetes

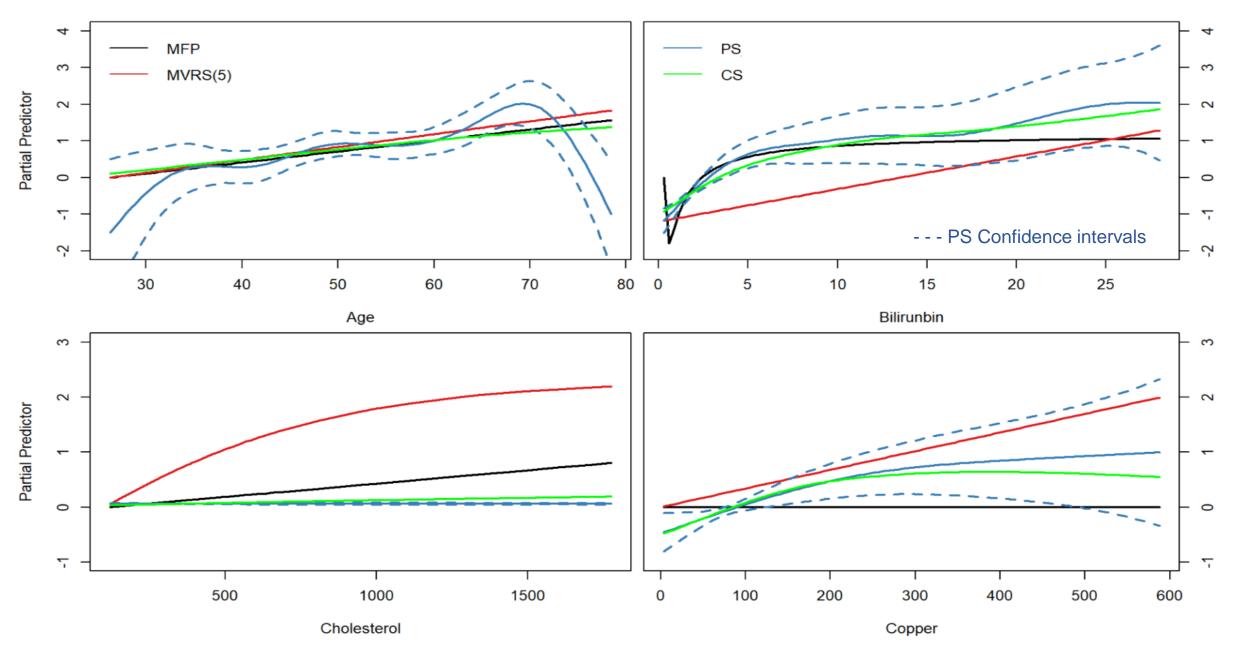
Age

PBC data

Variables	MFP(2)	MVRS(5)	TS_1	TS_2	PS_2	NS
	power	df	edf	edf	edf	edf
age	lin	1	5.8	5.7	4.9	1.1
bili	-2, -1	1	3.9	4.6	3.8	2.7
chol	1	2	0.0	0.0	0.0	0.2
albumin	-	-	0.9	0.9	0.8	1.4
copper	-	1	0.9	1.4	1.6	1.7
trig	-	1	0.8	0.8	0.8	0.6
asc	in	in	in	in	in	-
spiders	-	in	-	-	-	-
edema	in	in	-	-	-	> in
stage	in	in	in	in	in	in

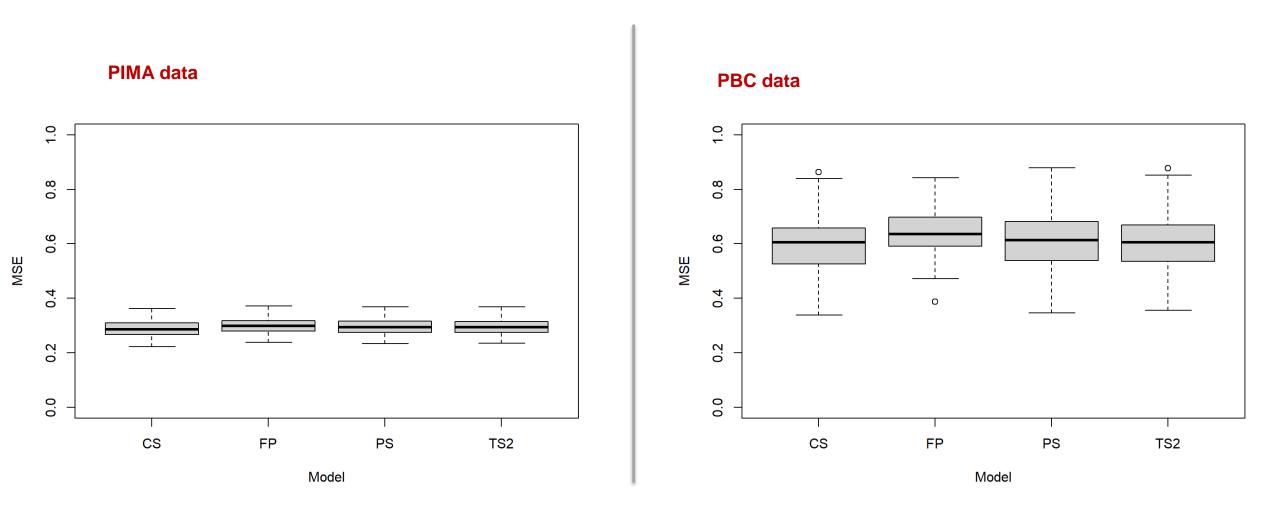
Methods disagree on inclusion

Functional forms



Prediction error

• 100 bootstrap samples for each dataset, leave 10% out for each sample.



Simulation

200 iterations of n normal responses

• n = 400, n=1200

8 continuous covariates

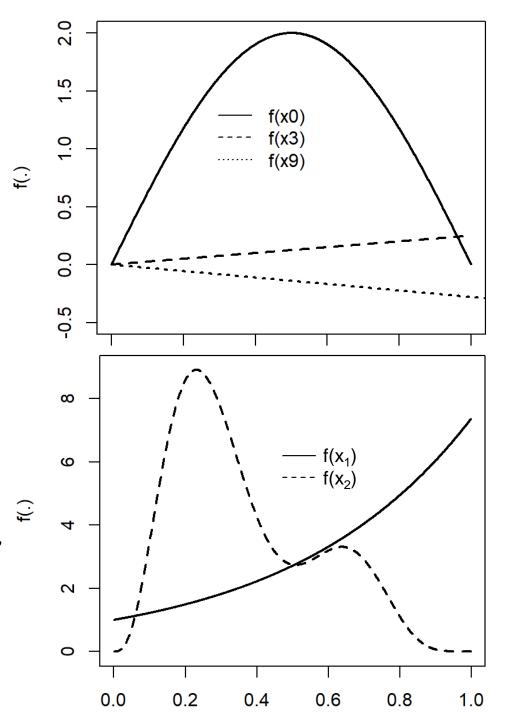
• 5 known functions (right) and 3 spurious (x_4-x_6)

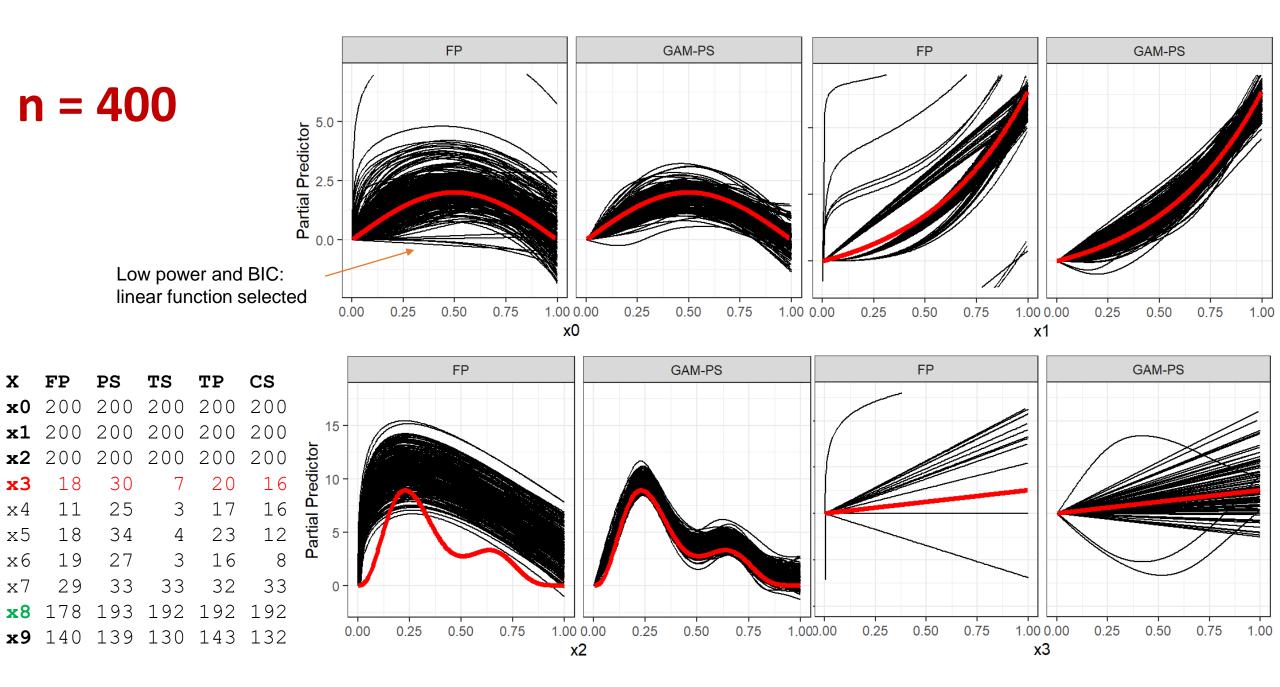
2 binary covariates

1 spurious (x₇), 1 related to outcome (0.72*x8)

 $y=f(x_0) + f(x_1) + f(x_2) + f(x_3) + 0.72^* x8 + f(x_9) + \varepsilon$

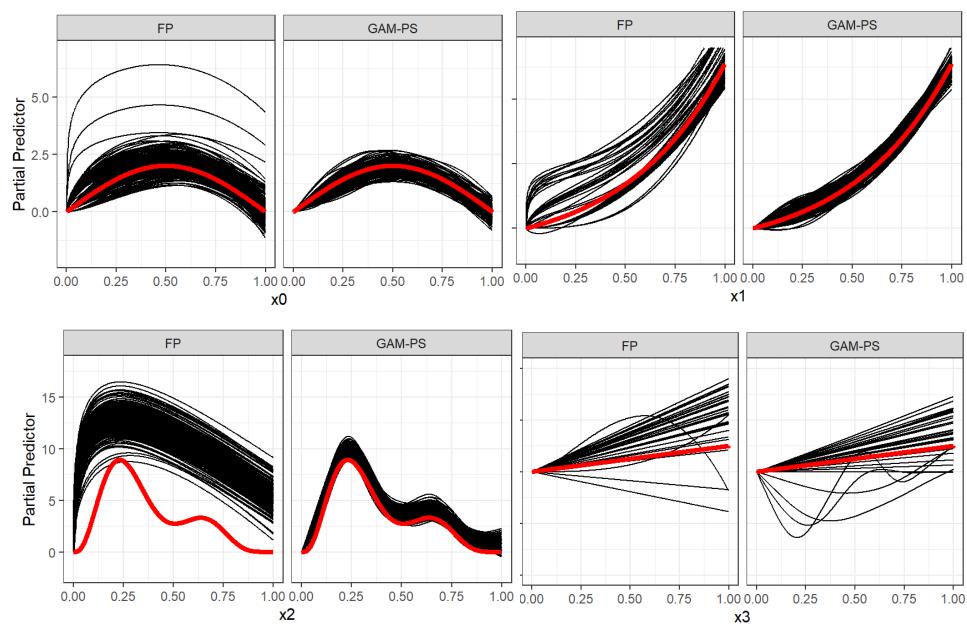
Very limited setting similar to Gu and Wahba (four univariate term example, from function gamSim in mgcv) More interesting simulations to follow, with correlated variables, and more features.





n=1200

TS2 CS FP PS TS1 200 200 200 200 200 $\mathbf{x0}$ 200 200 200 200 200 $\mathbf{x1}$ **x**2 200 200 200 200 200 42 **x**3 47 19 40 47 27 29 2 15 12 x4 23 29 12 x5 6 14 13 25 6 3 x6 11 32 31 33 34 33 x7 200 200 200 200 200 **x**8 199 199 199 199 199 **x**9



Discussion

- Choice of parameters can alter effects (significance levels, AIC/BIC for MFP, maximum df for splines, choice of penalty, knots, etc). All results here produced at software default.
- In agreement with Royston & Sauerbrei (2008), MFP and spline approaches provide roughly comparable models.
- Approaches where closer in logistic regression setting with a fair sample size of 768 observations. Differences were more obvious in smaller sample size (survival model).
- MSE from all models showed little difference between approaches. However, main interest here is in models for description.
- In simulated data, where more flexibility is required, FP(2) may not be enough. Equally, penalised splines will not always correctly identify a linear relationship.
- Penalised approaches (double penalty) can be computationally expensive but can still handle moderate sample sizes.
- Limitation: simple simulation setting, small number of non-correlated variables.

References

- Sauerbrei, Willi, et al. "State of the art in selection of variables and functional forms in multivariable analysis—outstanding issues." *Diagnostic and prognostic research* 4.1 (2020): 1-18.
- Royston, Patrick, and Willi Sauerbrei. *Multivariable model-building: a pragmatic approach to* regression anaylsis based on fractional polynomials for modelling continuous variables. John Wiley & Sons, 2008.
- Marra, Giampiero, and Simon N. Wood. "Practical variable selection for generalized additive models." Computational Statistics & Data Analysis 55.7 (2011): 2372-2387.
- Perperoglou, Aris, et al. "A review of spline function procedures in R." *BMC medical research methodology* 19.1 (2019): 1-16.
- Gu, Chong, and Grace Wahba. "Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method." SIAM Journal on Scientific and Statistical Computing (1991): 383-398.