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Aims

Introduction to `Counterfactual prediction’

Feedback from Lorentz workshop `Counterfactual prediction for personalized medicine’

Discuss potential connections to Stratos topic groups

Share and make follow-up plans
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Introduction to counterfactual prediction
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What’s in a name?

4

Counterfactual prediction

Causal prediction

Prediction under hypothetical 
interventions

Prediction under interventions
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Prediction

E( Y | X = x ) risk of outcome 
conditional on X

Causal inference

E( Y1 – Y0 ) average treatment effect
(ATE)

E( Y1 – Y0 | M = m ) conditional average 
treatment effect (CATE) 

Prediction under interventions

E( Y1 | V = v )  risk of outcome conditional on V 
if treatment would be 1

E( Y0 | V = v )  risk of outcome conditional on V 
if treatment would be 0
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Prediction

E( Y | X = x ) risk of outcome 
conditional on X

X may include anything: no need to worry 
about confounding, mediation, colliders 
etc.

Causal inference

E( Y1 – Y0 ) average treatment effect
(ATE)

E( Y1 – Y0 | M = m ) conditional average 
treatment effect (CATE) 

M  effect modifiers; need to account for 
confounding and other potential biases

Prediction under interventions

E( Y1 | V = v )  risk of outcome conditional on V 
if treatment would be 1

E( Y0 | V = v )  risk of outcome conditional on V 
if treatment would be 0

V may include prognostic factors and effect modifiers; need to 
account for confounding and other potential biases



What are predictions under interventions for?

Absolute risks under certain treatment choices can inform individual treatment decisions

- individualize risks for a particular patient

- weigh their risks and benefits of different treatment options

- inform allocation of treatments that are subject to resource constraints

What’s my risk if we don’t do 

anything doctor?

What if I try that other drug?

What if I allocate this organ to this patient?
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Feedback from Lorentz workshop Counterfactual prediction for 
personalized medicine
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Case study type 2 diabetes 

• Patients with multimorbidity1 & polypharmacy are historically excluded from clinical 
trials

• High risk of adverse drug events
• Heterogeneous treatment effects on adverse events: response to medications varies 

between patient subgroups

1e.g. additional psychiatric disorders, hypertension, arthritis, kidney disease
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Treatment for Type 2 Diabetes

Mr. Koopman is living with 
type 2 diabetes, as well as 
hypertension, dyslipidemia and 
history of pancreatitis. His 
HbA1c level is 9.5.

Mr. Koopman is using a 
medication called metformin 
which is used to lower his 
blood glucose levels (most 
common first line therapy)
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Adding a second diabetes medication

Dr. Bos explains that his 
blood glucose levels are still 
too high and that they 
should think about starting a 
second diabetes medication. 
Four options: SU, DPP-4 i’s, 
GLP-1 RA, SGLT2-I

How should the choice of 
add-on therapy be 
individualized for Mr. 
Koopman? 

15



Case study questions

For patients like Mr. Koopman, calculate the absolute risk of 5-year major adverse 
cardiovascular events when 

a) adding no therapy (i.e. ‘No add-on’) at the index date (time=0) 

b) adding a second line agent at the index date (time=0): 
GLP1-RA, SU, DPP-4i or SGLT-2 

c) adding no treatment during the full 5 years
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Synthetic data generation

- Relationships, distributions etc. from 
literature and from real datasets

- Simulated a synthetic longitudinal dataset 
including

- time-fixed and longitudinal covariates
- time-to-event outcomes
- both treatment and outcome depend 

on (longitudinal) covariates
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Case study: five working groups

1. Offset method (observational data + treatment effects from trials)
2. Censoring and weighting / MSM
3. G-formula
4. ‘Direct’ doubly robust –learner
5. Counterfactual recurrent network

18



Public lecture: `Can predicting the future help us to make 
better decisions about our health?’

Lecture to a lay audience in museum Boerhaave (Stratos level 0?)

Focus on whether health calculators / apps give useful advice for lifestyle changes 

Introducing confounding and causal inference from observational data along the way

Fun to do!
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Follow up plans from the Lorentz workshop

1. Place knowledge gaps identified at workshop in ‘Learning Health System’-framework
2. Causal blind spots in risk-based decision making
3. When prediction models become harmful
4. Estimands for sequential prediction under interventions
5. Benchmarking dataset for causal inference
6. Work out estimation methods applied during workshop
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PRECOG –reporting guideline for counterfactual prediction
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Discuss potential connections to Stratos topic groups
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Evaluating diagnostic tests and prediction models (TG6)

2323

Prediction

- discrimination/calibration/R-squared/…

Causal inference

Prediction under interventions

Initial proposals for assessing predictive 
performance:
- binary outcomes (Pajouheshnia et al 2017, Coston et al 

2020, Boyer 2023) 
- time-to-event outcomes (Keogh and van Geloven 2023)

- typically no data-driven performance 
assessment 

- focus on sensitivity analyses under 
different assumptions



Selection of variables and functional forms in multivariable analysis 
(TG2)
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Prediction

- goal is minimizing prediction error
- penalization / cross-validation / 

bootstrapping / … (Heinze et al 2018, 
Sauerbrei et al 2020)

Causal inference

Prediction under interventions

Mix of the above?

- goal is estimation of causal effect with 
low bias and high precision

- domain knowledge is key



Missing data (TG1)
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Prediction

- bias in parameters not a concern
- missing pattern itself could improve 

prediction (eg, Sperrin et al 2020)
- Ongoing area of research 

Causal inference

Prediction under interventions

Mix of the above?

- aiming for unbiased estimation of 
causal effects

- causal diagrams support analysis 
choices (eg, Lee et al. 2021)



Measurement error and misclassification (TG4)
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Prediction

Predictors: if error used in training set is 
the same as in deployment setting, ok

Causal inference

Prediction under interventions

Mix of the above?

In exposure: issue
Confounders: if error seen by historical 
decision makers setting is the same as in 
training data, ok



Summary and recommendations

Models for predictions under interventions contain a causal part and a non-causal part

This may require mixed strategies for
- performance evaluation
- variable selection
- missing data
- measurement error
- …

Stratos papers should make clear whether advice applies to descriptive, predictive, or 
causal research

In some areas methodological expansions (fusions) are needed to cater for predictions 
under interventions
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Request for participation in a short survey

20-sep-2328



Thank you

n.van_geloven@lumc.nl
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Obtaining predictions under interventions from data

Individual patient data from RCTs: subgroup analyses / PATH statement – often 
challenged by limited sample size

Combining observational data with treatment effects from published RCT’s, e.g., Predict 
breast cancer – does not allow treatment heterogeneity

Observational data – challenges in addressing confounding 
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