Analysis of time-to-event for observational studies: Guidance to the use of intensity models

On behalf of STRATOS TG8

Maja Pohar Perme

IBMI, University of Ljubljana

Applied statistics, Koper, 2023

The plan of this talk

Received: 30 March 2020 Revised: 4 September 2020 Accepted: 4 September 2020

DOI: 10.1002/sim.8757

TUTORIAL IN BIOSTATISTICS

Statistics in Medicine WILEY

Analysis of time-to-event for observational studies: Guidance to the use of intensity models

Per Kragh Andersen¹© | Maja Pohar Perme²© | Hans C. van Houwelingen³ | Richard J. Cook⁴© | Pierre Joly⁵ | Torben Martinussen¹ | Jeremy M. G. Taylor⁶ | Michal Abrahamowicz⁷© | Terry M. Therneau⁸

Overview paper:

- Basic ideas and pitfalls of survival analysis, organized as checklists
- Hazard models and beyond
- Illustrative example patients with peripheral arterial disease

Survival analysis

Occurrence of a particular event in time

• $\lambda(t)$: intensity (hazard)

incomplete information: censoring or competing risk

Intensity or hazard function

$$\lambda_i(t) \approx P(\text{event in } (t, t+dt) \mid \text{past at time } t-)/dt$$

- dynamic description of how events occur in time
- can be estimated directly (assuming independent censoring assumption)
- inclusion of time-dependent covariates
- taking account of delayed entry
- conditionally dependent censoring

May be of interest in its own right, insufficient for some questions - absolute risk

$$\lambda(t) = -\frac{d\log S(t)}{dt}$$

Survival analysis - notation

Standard notation • T_i : follow-up time • δ_i : censoring indicator • V_i : entry time • $Z_i(t)$: covariate vecor

Counting process notation

For each individual i

- $Y_i(t)$: at risk indicator. Drops from 1 to 0 in case of event or censoring. In case of delayed entry: can be 0 at t = 0
- N_i(t): counting events. Jumps from 0 to 1 in case of event occurrence.
- \bigcirc $Z_i(t)$: covariate vector

Our data example

Peripheral arterial disease

- Common circulatory problem, narrowed arteries, sign of atherosclerosis, increased risk for CV (cardio-vascular) events
- 742 PAD patients and 713 controls, Slovenia, 5 years of follow up
- Baseline data, measurements at each visit, endpoints
- Goal: survival of patients with PAD (in comparison to controls) despite optimal treatment

Preliminary concepts and issues

In general:

- Time origin: unambigously defined, comparable, clinically relevant. Defines time axis, multiple time axes may be relevant
- Inclusion criteria: must be met by the time the patient enters the study (Y(t) first becomes 1) - danger of immortal time bias
- Event definition: Clearly defined, the definition should be clear at the time of event (when N(t) switches to 1) danger of immortal time bias
- Censoring: We wish to estimate a complete, uncensored, population. Independent censoring assumption. Why was a patient censored?

PAD example:

- Time origin: enrollment or birth, conditional survival in case of age as time axis.
- Inclusion criteria: PAD (and age-matched controls) at the time of enrollment. Ever or never PAD cannot be a criterium, time-varying covariate PAD could be
- Event definition: death (CV or non CV), major CV events(stroke, infarction), minor events (revascularization)
- Censoring: 5th visit after 5 years. Censored at 5 years. Non CV death as a competing risk.

Preliminary concepts and issues - time origin

Years since enrollment

Age (years)

PH model ●○○○

Proportional hazards models

Cox PH model

- Estimation: maximum partial likelihood
- Std. errors, tests as in classical likelihood
- Valid in simple and more general situation (factorization)

Alternatives

- Other PH models: parametric (constant, piecewise constant, Weibull, splines)
- Cox extensions: time-varying effects, stratified Cox
- Alternative models: additive hazards (Aalen), accelerated failure time (AFT) model

PH model ○●○○

Cox PH model

PH model ○○●○

Immortal time bias

The values of Z(t), N(t) and Y(t) should be defined so that they do not depend on N(s), Y(s) or Z(s) for s > t

Examples in PAD

Age axis: do not forget about delayed entry. Otherwise Y depending on N at a higher age.

Some controls are diagnosed with PAD at later visits. Do not exclude them from the control group. Options:

- PAD status can be time-fixed (value at enrollment)
- Time-dependent (current value)
- but NOT time-fixed at the value at the end of follow-up (ever PAD vs never-PAD). Example of Z depending on later values of itself

・ロト・西ト・ヨト・ヨー シック

PH model ○○●○

Immortal time bias

The values of Z(t), N(t) and Y(t) should be defined so that they do not depend on N(s), Y(s) or Z(s) for s > t

Examples in PAD

Age axis: do not forget about delayed entry. Otherwise Y depending on N at a higher age.

Some controls are diagnosed with PAD at later visits. Do not exclude them from the control group. Options:

- PAD status can be time-fixed (value at enrollment)
- Time-dependent (current value)
- but NOT time-fixed at the value at the end of follow-up (ever PAD vs never-PAD). Example of Z depending on later values of itself

PH model ○○○●

Fitting the Cox PH model - PAD example, part I

Event - death of any cause

The effect of PAD and sex (m vs f) - which time axis?

- Time since enrollment: add age (per 10 years, assume linearity)
- Age axis: add time since enrollment (FU, per year, assume linearity)
- Multiple axes: Poisson

Time since enroll			Age axis			Both axes		
Cov	HR	95% CI	Cov	HR	95% CI	Cov	HR	95% CI
PAD	2.40	(1.71, 3.37)	PAD	2.40	(1.70, 3.37)	PAD	2.38	(1.70, 3.35)
Sex	2.00	(1.40, 2.86)	Sex	2.02	(1.42, 2.90)	Sex	2.01	(1.41, 2.88)
Age	1.93	(1.57, 2.37)	FU	1.18	(1.05, 1.33)			

PH model ○○○●

Fitting the Cox PH model - PAD example, part I

Event - death of any cause

The effect of PAD and sex (m vs f) - which time axis?

- Time since enrollment: add age (per 10 years, assume linearity)
- Age axis: add time since enrollment (FU, per year, assume linearity)
- Multiple axes: Poisson

Time since enroll			Age axis			Both axes		
Cov	HR	95% CI	Cov	HR	95% CI	Cov	HR	95% CI
PAD	2.40	(1.71, 3.37)	PAD	2.40	(1.70, 3.37)	PAD	2.38	(1.70, 3.35)
Sex	2.00	(1.40, 2.86)	Sex	2.02	(1.42, 2.90)	Sex	2.01	(1.41, 2.88)
Age	1.93	(1.57, 2.37)	FU	1.18	(1.05, 1.33)			

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

PH model ○○○●

Fitting the Cox PH model - PAD example, part I

Event - death of any cause

The effect of PAD and sex (m vs f) - which time axis?

- Time since enrollment: add age (per 10 years, assume linearity)
- Age axis: add time since enrollment (FU, per year, assume linearity)
- Multiple axes: Poisson

Time since enroll			Age axis			Both axes		
Cov	HR	95% CI	Cov	HR	95% CI	Cov	HR	95% CI
PAD	2.40	(1.71, 3.37)	PAD	2.40	(1.70, 3.37)	PAD	2.38	(1.70, 3.35)
Sex	2.00	(1.40, 2.86)	Sex	2.02	(1.42, 2.90)	Sex	2.01	(1.41, 2.88)
Age	1.93	(1.57, 2.37)	FU	1.18	(1.05, 1.33)			

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Competing risks analysis - PAD

Death of cardio-vascular reasons

- Non-CV cause: competing risk, not censoring (present in the complete population, elimination not of interest)
- Estimate probabilities: Aalen-Johansen

Years since enrollment

Fitting the Cox model - PAD example, part II

Competing risks

- Non-CV cause: can be treated at censoring in the Cox model (factorization of the likelihood)
- Time fixed or time-dependent covariates
- All CV causes (death + stroke, infarction)

	CV death				
	Ti	Time-fixed			
	HR	95% CI			
PAD	2.87	(1.65-5)			
Sex (m vs. f)	1.67	(0.97 - 2.88)			
Age (per10yrs)	1.93	(1.40-2.66)			
HDL (mmol/l)	0.74	(0.39-1.41)			
LDL (mmol/l)	0.92	(0.72-1.18)			

After fitting the Cox model - PAD example, part III

Check assumptions

- Proportional hazards, linearity (continuous variables)
- Many methods available: Schoenfeld residuals, martingale residuals
- What to do if violated: confounder or the variable of interest (omission of strong predictors!)

After fitting the Cox model - PAD example, part IV

Reporting and interpretation

- If only HRs are reported no absolute risks can be obtained
- Competing risks: hazard vs probability
- Absolute risks: prediction from t = 0 onwards

Time-fixed, other cause				
HR	95% CI			
2.04	(1.31–3.19)			
2.12	(1.29-3.50)			
1.93	(1.45-2.56)			
0.82	(0.43-1.55)			
1.02	(0.83-1.26)			
	Time-1 HR 2.04 2.12 1.93 0.82 1.02			

Concluding remarks

The subtitles in the paper

- Preliminary concepts and issues
- The intensity
- Proportional hazard models and alternatives
- A check-list when fitting the Cox model
- Immortal time bias
- Prediction in the absence/presence of competing risks
- Issues in causal inference
- Illustrative applications + supplement with code

Analysis of time-to-event for observational studies: Guidance to the use of intensity models

Per Kragh Andersen¹ | Maja Pohar Perme^{*2} | Hans C. van Houwelingen³ | Richard J. Cook⁴ | Pierre Joly⁵ | Torben Martinussen¹ | Jeremy M.G. Taylor⁶ | Michal Abrahamowicz⁷ | Terry M. Therneau⁸ | for the STRATOS TG8 topic group

