
Methods in the literature
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The Naive modal method:
Classical regression as if there was no measurement error

The Naive proportional method:
Classical regression weighted by the posterior probability

The Weighting correction method (Bolck 2004, Bakk 2013):
Classical regression weighted by the misclassification due to
the assignment: P(assignment | true class)
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Methods in the literature (cont’d)

The conditional regression on the truth (Vermunt 2010, Bakk 2013):
The regression based on the assignment is rewritten according to our
target classes
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The two-stage method (Xue et Bandeen-Roche 2002, Bakk et Kuha 2018, Proust-Lima 2023):
We consider the generating model for the total information

but we estimate it in two steps:

L (Xi,Yext
i | θ̂X

G,θY
G) =

N∑
i=1

log

(
G∑

g=1
P(ci = g ; θ̂X

G) × f (Xi | ci = g ; θ̂X
G) × f (Yext

i | ci = g ; θY
G)

)

1 estimate parameters θX
G concerning Xi

2 estimate parameters θY
G concerning Yext based on those of step 1

Cécile Proust-Lima (INSERM, France) Accounting for misclassification in latent class models Applied Statistics - Koper/Capodistria, Sept 2023 9 / 20



Methods in the literature (cont’d)

The conditional regression on the truth (Vermunt 2010, Bakk 2013):
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Methods in the literature (cont’d)

The conditional regression on the truth (Vermunt 2010, Bakk 2013):
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target classes
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Evaluation of the methods with simulations
Simultaneous generation of the total information (Exposure and External outcome)
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Scenarios of Time-Varying Exposures
2 classes (probability 0.5); 2 sample sizes (N=200, 1000);
3 levels of separation (entropy=65%, 75%, 85%)
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Scenarios of continuous cross-sectional external outcome
3 levels of distance between classes (mean difference = 0.5, 2 or 5)

Diff between means = 0.5 Diff between means = 2 Diff between means = 5
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Performances: bias in the external outcome model? N=200
3 parameters to examine: mean in each class + variance of the error
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Performances: bias in the external outcome model? N=200
3 parameters to examine: mean in each class + variance of the error
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Performances: bias in the external outcome model? N=1000
3 parameters to examine: mean in each class + variance of the error
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