Methods in the literature

The Naive modal method:

Classical regression as if there was no measurement error

- The Naive proportional method: Classical regression weighted by the posterior probability
- The Weighting correction method (Bolck 2004, Bakk 2013): Classical regression weighted by the misclassification due to the assignment: P(assignment | true class)

 $\mathcal{L}(Y_i^{ext}|(\hat{c}_i) = \sum_{i=1}^N \log \left(f(Y_i^{ext} \mid \hat{c}_i) \right)$

 $\mathcal{L}(Y_i^{ext}|(\hat{c}_i) = \sum_{i=1}^N \sum_{g=1}^G \hat{\pi}_{ig} \log \left(f(Y_i^{ext} \mid g) \right)$

 $\mathcal{L}(Y_i^{ext}|(\hat{c}_i) = \sum_{i=1}^N \sum_{g=1}^G w(\hat{c}_i, \hat{\pi}_{ig}) \log \left(f(Y_i^{ext} \mid g) \right)$

Methods in the literature (cont'd)

• The conditional regression on the truth (Vermunt 2010, Bakk 2013): The regression based on the assignment is rewritten according to our target classes

$$\mathscr{L}(Y_i^{ext}|\hat{c}_i) = \sum_{i=1}^N \log\left(f(Y_i^{ext}|\hat{c}_i)\right) = \sum_{i=1}^N \log\left(\sum_{g=1}^G f(Y_i^{ext}|c_i=g) \times \underbrace{P(c_i=g|\hat{c}_i)}_{w_{ig}}\right)$$

Methods in the literature (cont'd)

• The conditional regression on the truth (Vermunt 2010, Bakk 2013): The regression based on the assignment is rewritten according to our target classes

9/20

$$\mathscr{L}(Y_i^{ext}|\hat{c}_i) = \sum_{i=1}^N \log\left(f(Y_i^{ext} \mid \hat{c}_i)\right) = \sum_{i=1}^N \log\left(\sum_{g=1}^G f(Y_i^{ext} \mid c_i = g) \times \underbrace{P(c_i = g \mid \hat{c}_i)}_{w_{ig}}\right)$$

• The two-stage method (Xue et Bandeen-Roche 2002, Bakk et Kuha 2018, Proust-Lima 2023): We consider the generating model for the total information

$$\mathscr{L}(X_i, Y_i^{ext} \mid \theta_G^X, \theta_G^Y) = \sum_{i=1}^N \log \left(\sum_{g=1}^G P(c_i = g \; ; \; \theta_G^X) \times f(X_i \mid c_i = g \; ; \; \theta_G^X) \times f(Y_i^{ext} \mid c_i = g \; ; \; \theta_G^Y) \right)$$

Methods in the literature (cont'd)

• The conditional regression on the truth (Vermunt 2010, Bakk 2013): The regression based on the assignment is rewritten according to our target classes

$$\mathscr{L}(Y_i^{ext}|\hat{c}_i) = \sum_{i=1}^N \log\left(f(Y_i^{ext}|\hat{c}_i)\right) = \sum_{i=1}^N \log\left(\sum_{g=1}^G f(Y_i^{ext}|c_i=g) \times \underbrace{P(c_i=g|\hat{c}_i)}_{w_{ig}}\right)$$

• The two-stage method (Xue et Bandeen-Roche 2002, Bakk et Kuha 2018, Proust-Lima 2023): We consider the generating model for the total information but we estimate it in two steps:

$$\mathscr{L}(X_i, Y_i^{ext} \mid \hat{\theta}_G^X, \theta_G^Y) = \sum_{i=1}^N \log \left(\sum_{g=1}^G P(c_i = g \ ; \ \hat{\theta}_G^X) \times f(X_i \mid c_i = g \ ; \ \hat{\theta}_G^X) \times f(Y_i^{ext} \mid c_i = g \ ; \ \theta_G^Y) \right)$$

estimate parameters θ^X_G concerning X_i
estimate parameters θ^Y_G concerning Y^{ext} based on those of step 1

Cécile Proust-Lima (INSERM, France)

Accounting for misclassification in latent class models

Evaluation of the methods with simulations

Simultaneous generation of the total information (Exposure and External outcome)

e.g., BMI trajectory, Physical Activity in young adulthood

Scenarios of Time-Varying Exposures

2 classes (probability 0.5); 2 sample sizes (N=200, 1000);
3 levels of separation (entropy=65%, 75%, 85%)

Scenarios of continuous cross-sectional external outcome

• 3 levels of distance between classes (mean difference = 0.5, 2 or 5)

Performances: bias in the external outcome model? N=200

3 parameters to examine: mean in each class + variance of the error

Cécile Proust-Lima (INSERM, France)

Performances: bias in the external outcome model? N=200

• 3 parameters to examine: mean in each class + variance of the error

Performances: bias in the external outcome model? N=1000

• 3 parameters to examine: mean in each class + variance of the error

