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Introduction

The Subject

I Fit a statistical model of the form g(Y |X ) = β0 + f (X )

I p explanatory variables X = (X1, . . . ,Xp)

I f unknown, allowed to be nonlinear but should be interpretable

I Common specification: f (X1, . . . ,Xp) = f1(X1) + . . .+ fp(Xp)

→ Generalized additive models (GAMs)

I Splines are the most popular method to estimate f1, . . . , fp

I GAM books by Hastie/Tibshirani and Wood are hugely
popular (> 14, 000 and > 6, 000 citations, respectively)
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Introduction

Definition of Splines

I Set of piecewise polynomials, each of degree d

I Joined together at a set of knots τ1, . . . , τK

I Continuous in value + sufficiently smooth at the knots
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Introduction

TG2 Talk at 2016 CEN Conference, Munich

I Review of spline implementations in R

I Conclusions:

“Details of spline routines [...] are often not contained in [R]

help files + may be difficult to retrieve from literature”

‘’Notable exception: mgcv”

I mgcv package (Wood, 2017) is arguably the most popular
spline modeling package in R

I Accompanies the book “Generalized Additive Models –
An Introduction with R” (Wood, 2017, 2nd edition)

I Book + articles referenced in mgcv help provide an excellent
documentation of the implemented methods
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Spline Implementations in mgcv

Spline Implementations in mgcv

I Simulation study on spline implementations in mgcv

I Specification of the desired spline method is done via the
s function (part of the formula argument that is passed to the
gam function of mgcv)

I Popular types of splines:

I Thin plate regression splines (argument s(x, bs = "tp"))

I Penalized cubic regression splines (argument s(x, bs =

"cr"))

I P-splines (argument s(x, bs = "ps"))

I Here, we rely on mgcv’s default procedures for knot selection
and smoothing parameter optimization
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Spline Implementations in mgcv

Thin Plate Regression Splines

I Low-rank approximation of thin plate splines

I Knot positions = data locations (with sub-sampling of data
locations if n is large)

I Defaults in mgcv:

I Degree 3

I Estimation with integrated second-order derivative penalty

I 9 coefficients per smooth term (null space dimension (= 2)
plus 8 minus intercept)

I Optimization of smoothing parameter via GCV
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Spline Implementations in mgcv

Penalized Cubic Regression Splines

I Natural cubic splines with k knots, integrated second-order
derivative penalty

I Based on cardinal spline basis (constructed such that j-th
basis function is 1 at the j-th knot and 0 at the other knots,
1 ≤ j ≤ k)

I Knots are placed evenly throughout the ordered covariate
values

I Defaults in mgcv:

I 10 knots per smooth term (9 coefficients: # knots minus
intercept)

I Optimization of smoothing parameter via GCV
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Spline Implementations in mgcv

P-Splines

I Polynomial splines, based on B-spline basis

I Integrated squared derivative penalty is approximated by an
m-th order difference penalty

I Knots are placed evenly throughout the ordered covariate
values

I Defaults in mgcv:

I Cubic splines (degree 3) with second-order difference penalty

I 6 inner knots and 2 boundary knots per smooth term
(9 coefficients: # inner knots + degree 3 + 1 minus intercept)

I Optimization of smoothing parameter via GCV
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Simulation Design

Simulation Design

I Model: Y = f1(X1) + f2(X2) + f3(X3) + f4(X4) + ε

I f1(X1) = X1, f2(X2) = log(X2 + 0.05), f3(X3) = 0,

f4(X4) = sin(4 · π · X4)
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Simulation Design

Simulation Design (2)
I 100 simulation runs with sample sizes n = 100, 300, 500

I Data values of X1,X2,X3,X4: independent permutations of
1/n, 2/n, . . . , n/n

I Use standardized values of fj(Xj), j = 1, 2, 3, 4

I ε ∼ N (σ2)

I σ2 adjusted such that R2 = 0.75

I For n = 300: Additionally investigate R2 = 0.25, 0.5

I Run gam with tp, cr and ps implementations (using default
procedures)

I Defaults in mgcv ensure that all spline bases have the same
dimensionality

I Evaluation: covariate-wise mean squared error,
∫
xj

(fj − f̂j)
2dPxj
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Results

Estimates (1)

tp estimates of f1 and f2:
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Results

Estimates (2)

tp estimates of f3 and f4:
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Results

Estimates (3)

tp, cr and ps estimates of f3 and f4, n = 100:
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Results

Model Performance (1)

MSE estimates obtained from tp, cr and ps, n = 100:
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Results

Model Performance (2)

MSE estimates obtained from tp, n = 300, various values of R2:
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Results

Model Performance (3)

MSE estimates for f4, as obtained from tp, cr and ps
(n = 300, various values of R2):
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Conclusion

Summary of the Simulation Study

I Regression setting with reasonably large sample sizes

I Setting refers to “typical” predictor-response relationships,
not too wiggly

I Uncorrelated predictors, no outliers in X

⇒ In this setting, mgcv defaults worked well

⇒ Differences between tp, cr and ps appear to be negligible

I Next steps: Correlated predictors, more noise variables, less smooth
variable transformations
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