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The Subject

» Fit a statistical model of the form g(Y|X) = po + f(X)
» p explanatory variables X = (Xi,...,Xp)
» f unknown, allowed to be nonlinear but should be interpretable
» Common specification: f(Xi,...,Xp) = fi(X1) + ...+ f(Xp)
— Generalized additive models (GAMs)
» Splines are the most popular method to estimate f1,...,f,

» GAM books by Hastie/Tibshirani and Wood are hugely
popular (> 14,000 and > 6,000 citations, respectively)
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Definition of Splines

» Set of piecewise polynomials, each of degree d
» Joined together at a set of knots 71, ..., 7«

» Continuous in value + sufficiently smooth at the knots

fI(Xl)
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TG2 Talk at 2016 CEN Conference, Munich

» Review of spline implementations in R

» Conclusions:

“Details of spline routines [...] are often not contained in [R]
help files + may be difficult to retrieve from literature”

“"Notable exception: mgcv”

» mgcv package (Wood, 2017) is arguably the most popular
spline modeling package in R

» Accompanies the book “Generalized Additive Models —
An Introduction with R" (Wood, 2017, 2nd edition)

> Book + articles referenced in mgcv help provide an excellent
documentation of the implemented methods
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Spline Implementations in mgcv

» Simulation study on spline implementations in mgcv

» Specification of the desired spline method is done via the
s function (part of the formula argument that is passed to the
gam function of mgcv)

» Popular types of splines:
» Thin plate regression splines (argument s(x, bs = "tp"))

» Penalized cubic regression splines (argument s(x, bs =
"CI‘"))

» P-splines (argument s(x, bs = "ps"))

» Here, we rely on mgcv's default procedures for knot selection
and smoothing parameter optimization
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Thin Plate Regression Splines

» Low-rank approximation of thin plate splines

» Knot positions = data locations (with sub-sampling of data
locations if n is large)

» Defaults in mgcv:
> Degree 3
» Estimation with integrated second-order derivative penalty

» 9 coefficients per smooth term (null space dimension (= 2)
plus 8 minus intercept)

» Optimization of smoothing parameter via GCV
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Penalized Cubic Regression Splines
> Natural cubic splines with k knots, integrated second-order

derivative penalty

» Based on cardinal spline basis (constructed such that j-th
basis function is 1 at the j-th knot and 0 at the other knots,
1<j<k)

» Knots are placed evenly throughout the ordered covariate
values

> Defaults in mgcv:

» 10 knots per smooth term (9 coefficients: # knots minus
intercept)

» Optimization of smoothing parameter via GCV
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P-Splines

» Polynomial splines, based on B-spline basis

> Integrated squared derivative penalty is approximated by an
m-th order difference penalty

» Knots are placed evenly throughout the ordered covariate
values

> Defaults in mgcv:
» Cubic splines (degree 3) with second-order difference penalty

> 6 inner knots and 2 boundary knots per smooth term
(9 coefficients: # inner knots + degree 3 + 1 minus intercept)

» Optimization of smoothing parameter via GCV
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Simulation Design

> Model: Y = (X)) + £(X) + (Xs) + fa(Xa) +
> A(X1) = X1, H(Xe) = log(Xz + 0.05), £(Xz) =0,

f;],(X4) = sin(4 s X4)
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Simulation Design (2)

>

>

100 simulation runs with sample sizes n = 100, 300, 500

Data values of X1, X5, X3, Xy: independent permutations of
1/n,2/n,...;n/n

Use standardized values of £;(X;), j =1,2,3,4

e ~ N(c?)

02 adjusted such that R? = 0.75

For n = 300: Additionally investigate R?> = 0.25,0.5

Run gam with tp, cr and ps implementations (using default
procedures)

Defaults in mgcv ensure that all spline bases have the same
dimensionality

Evaluation: covariate-wise mean squared error, [ (f; — f;)?dP;
Xj J
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Estimates (1)

tp estimates of f; and f:
n =100 n =300 n =500
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Estimates (2)

tp estimates of f3 and f;:
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Estimates (3)

tp, cr and ps estimates of f3 and f;, n = 100:
tp, n =100 cr,n =100 ps, n =100
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Model Performance (1)

MSE estimates obtained from tp, cr and ps, n = 100:
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Model Performance (2)

MSE f,

MSE f,

MSE estimates obtained from tp, n = 300, various values of R:

0.4

0.2

0.0

0.2 0.4

0.0

imbie

f1 f2
©
S
o
. < g
w
- W y
! . s o ! .
| . =} H .
— o
[ —— o —
T T T © T T T
R2=0.25 R2 = 0.50 R2=0.75 R2=0.25 R2=0.50 R2=0.75
fa fa
L3
S
! «
! W o« I
: 2] 5 '
: 2 o :
: ; ==
!
E— . . ‘ ———
T T T © T T T
R2=0.25 R2=0.50 R2=0.75 R2=0.25 R2=0.50 R2=0.75

15/17



Spline Regression Modeling Using R — Methods and First Results
LResuIts

imbie

Model Performance (3)

MSE f,

MSE estimates for f4, as obtained from tp, cr and ps

(n = 300, various values of R?):
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Summary of the Simulation Study

> Regression setting with reasonably large sample sizes

> Setting refers to “typical’ predictor-response relationships,
not too wiggly

» Uncorrelated predictors, no outliers in X
= In this setting, mgcv defaults worked well

= Differences between tp, cr and ps appear to be negligible

> Next steps: Correlated predictors, more noise variables, less smooth
variable transformations
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