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Topic Group 9: Subtopics

(In context of large number of predictor or outcome variables1)

1. Data pre-processing

2. Exploratory data analysis

3. Data reduction

4. Multiple testing

5. Prediction modeling/algorithms

6. Comparative effectiveness and causal inference

7. Design considerations

8. Data simulation methods

9. Resources for publicly available high-dimensional data sets

1Number of variables p is much larger than sample size n
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Subtopic 8: Data Simulation Methods

Simulation experiments

to study efficacy of algorithms /statistical methods over a

range of differing situations

to identify appropriate algorithms / statistical methods in

specific situations

to perform sample size / power calculation

Issues specific to high-dimensional data

Underlying (biological) mechanism not well understood

Difficult to simulate realistic correlation structure and suitable

multivariate distributions
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Subtopic 8: Data Simulation Methods

Typical Approaches

Simulations based on assumed distributions (e.g. Poisson or

negative binomial for count data)

Simulations based on assumed distributions, using extracted

parameters from pilot data

Simulations using real data

Note:

The way in which data are generated has a strong impact on

the results of the subsequent statistical analyses

Simulation techniques with completely synthetic data cannot

capture the complex correlation structure among covariates in

high-dimensional data
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Methylation: Array Data

Methylation:

Infinium HumanMethylation450 BeadChip (Illumina)

The methylation status of roughly 485000 CpGs is derived by

measuring the intensities of methylated (M) and unmethylated

alleles (U) at each CpG site.

Beta value: betaj = Mj/(Mj + Uj) , j = 1, . . . , p

Beta distribution seems ”natural” since beta values represent

proportions between 0 and 1.
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Methylation: Array Data

Checking distributional assumptions

If the intensities M and U are independent, gamma distributed

random variables with the same scale parameter

=⇒ beta values (M/(M + U)) are beta distributed.
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Plasmode Simulation

Plasmode (from plasm=form, and mode=measure)

is a real (i.e., from actual biological specimens) data set for

which some aspect of the truth is known (Mehta et al.,

Physiological Genomics 2006)

Approaches

Manipulate the biological samples (e.g. Affycomp’s spike-in

benchmark data (Irizarry et al., Biostatistics 2003))

Permute samples of real datasets to generate null distribution;

add ’realistic effect’

Advantage

Distributions / correlations are taken directly from real data
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Plasmode Simulation

Input or Output?

Molecular data as the dependent variables.

Univariate Screening:

Xj = Model(age, gender , . . .), j = 1, . . . , p

Molecular data as the explanatory variables.

Multivariable Regression Model:

Y = Model(X1, . . . ,Xp, age, gender , . . .)
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Plasmode Simulation: Confounding Variables

Cohort Study with High-Dimensional Confounding

Since treatments are not randomized, addressing confounding is

the primary methodological challenge

Objective:

To compare the performance of

high-dimensional Propensity Score (hd-PS) variable selection

Ridge regression of the outcome on all potential confounders

Lasso regression of the outcome on all potential confounders

The goal is maximum reduction in confounding bias

Franklin JM, Schneeweiss S, Polinski JM, Rassen JA. Plasmode simulation

for the evaluation of pharmacoepidemiologic methods in complex healthcare

databases. Comput Stat Data Analysis 2014; 72: 219-226.
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Plasmode Simulation: Confounding Variables

Sample with replacement from cohort data to get desired

sample size n and exposure prevalence

Calculate pi = P(Yi = 1|Ei ,Xic), i = 1, . . . n, using

investigator-specified outcome-generating model

Simulate binary outcome status according

Y s
i ∼ B(1, pi ), i = 1, . . . n

=⇒ Correlations among exposure, true confounders, and other

covariates remain unchanged.
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Plasmode Simulation: Confounding Variables

Any	variables	
associated	with		
exposure	remain	
associated	with	
exposure	

Any	correla7ons	
among	covariates	
and	true	confounders	
remain	intact	

XC	

E	 Y	

X	

XC	=	True	confounders	
X	=	all	measured	covariates	

Associa7ons	with	outcome	are	
determined	by	simula7on	model	
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Plasmode Simulation: Variable Screening

Rank Based Sampling: Sample from real data, incorporate

covariable effects using ranks.

1. Draw sample of size n at a CpG site

2. Construct a linear predictor based on covariates X (fixed

effect) and Z (random effect):

ηi = xiζ1 + ε(ziζ2), i = 1, ..., n

3. Assign methylation value to patient i using the rank of his

individual ηi within the linear predictor sample η.

=⇒ Distribution of the methylation data is unchanged, but

samples with higher values of X will tend to have higher

methylation values at affected CpG sites.

Saadati M, Benner A. Statistical challenges of high-dimensional

methylation data. Statistics in Medicine 2014; 33: 5347-5357.
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Plasmode Simulation: Animal Study

Filtered RNAseq data (strain B6 vs. strain D2; Illumina)

Two factorial design (experiment, strain).

1. Analyse with edgeR (glm approach)) ⇒ logFCs, q-values

2. Build set of effects

Select p1 transcripts from total p, e.g. with q < 0.05

Set S1: Sample w/o replacement s = πp from p1, s < p1; π prop diff expr

3. Generate a partition of samples:

Select the samples from ’reference’ strain B6

Within each of the experiments select two samples and randomly assign

’group’ A or B

4. Add effects to group B:

Compute log-transform. of counts (c): z = log2(c + 1) for samples in B

Add logFC of set S1 to z of corresponding differentially expressed genes in

samples labeled B

5. Back-transform values obtained in (4): c = 2z − 1

6. Repeat n times step (2) through (5)

Reeb P, Steibel J. Evaluating statistical analysis models for RNA

sequencing experiments. Frontiers in Genetics 2013; 4: 178.
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Plasmode Simulation: Sample Size Calculation

Identification of prognostic biomarkers for time-to-event

outcomes

We consider two proposals

Tibshirani R. A simple method for assessing sample sizes in
microarray experiments. BMC Bioinformatics 2006, 7: 106.

Uses a permutation-based algorithm using pilot data

Implemented in R package samr

Lin W-J, Hsueh H-M, Chen JJ. Power and sample size
estimation in microarray studies. BMC Bioinformatics 2010,
11: 48.

Modification/extension of Tibshirani’s approach
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Plasmode Simulation: Sample Size Calculation

Tibshirani (2006) Hypotheses Not rejected Rejected Total

True U V m0

False T S m1

Total m − R R m

Estimates false discovery rate FDR = V
R

and false nondiscovery rate FNR = T
m−R

For simplicity, choose rule so that R = m1

Now 1− power = FDR and type 1 error = FNR

14



Pilot data for
n observations and p features

Null distribution of scores
Feature-wise variances

Plasmode data set

F̂DR & F̂NR
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Plasmode Simulation: Sample Size Calculation

1 2 3 4 5 6 7 8 9 10
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Plasmode Simulation: Sample Size Calculation

4 7 9 101 2 3 5 6 8

False Null

True Null

k=6
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Plasmode Simulation: Sample Size Calculation
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Plasmode Simulation: Sample Size Calculation

4 7 9 101 2 3 5 6 8

False Null

True Null

Rejections Non-rejections

k=6

→ FDR = 1
6

→ FNR = 1
4
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Plasmode Simulation: Sample Size Calculation

Lin et al. (2010) Hypotheses Not rejected Rejected Total

True U V m0

False T S m1

Total m − R R m

Modification of the approach of Tibshirani (2006)

Add adjustment factor to avoid bias due to small pilot data

sets

Revise definition of the cut-off

Calculates sample size for specified TPR = S
m1

(power)

FDR = V
R is controlled
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Application

307 newly diagnosed acute myeloid leukemia (AML) patients

Clinical data + gene expression data for ≈ 5000 genes

Endpoint: Event-free survival (EFS)
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Application - Tibshirani (2006)
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Application - Lin et al. (2010)
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Summary

Plasmodes can be an alternative to synthetic data

but

No one-fits-all solution

Depend on availability of appropriate real data sets

Of course: Work in progress
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