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Thorough validation is pivotal for any
prediction model before it can be
advocated for use in medical practice.
For time-to-event outcomes such as
breast cancer recurrence, death from
other causes is a competing risk. Model
performance measures must account
for such competing events. In this
article, we present a comprehensive
yet accessible overview of performance
measures for this competing event
setting, including the calculation and
interpretation of statistical measures
for calibration, discrimination, overall
prediction error, and clinical usefulness
by decision curve analysis. All methods
are illustrated for patients with breast
cancer, with publicly available data and
R code.

Prediction models are pivotal for counselling patients
about their prognosis and for risk stratification.’
Interest often lies in predicting a non-fatal adverse
event over a certain time period, for example, breast
cancer recurrence within five years after diagnosis. As
study populations of common diseases increasingly
consist of elderly individuals with high degrees
of multimorbidity, patients will experience other
events that preclude the occurrence of the event of
interest.” For example, a patient with a previous
breast cancer who dies from a cardiovascular cause
can no longer experience breast cancer recurrence.

SUMMARY POINTS

clinical practice

model validation

Validation is a necessary step for prediction models before they are used in
In the presence of competing risks, these other risks have to be accounted for at

This article provides a comprehensive overview of performance measures for
calibration, discrimination, overall prediction error, and decision curve analysis
that account for competing events

Data and the R code used forillustration of the measures are available from
https://github.com/survival-lumc/ValidationCompRisks
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In these settings, prediction models should target
the cumulative incidence (or absolute risk’) of the
adverse event, which is defined as the probability
of the event of interest occurring by a particular
time point with no other competing event occurring
earlier. In the breast cancer example, the cumulative
incidence of recurrence at five years is the risk of
developing a recurrence within five years, taking into
account that patients who die within five years cannot
develop recurrence anymore. Failing to account for
competing events during model development leads
to overestimation of the cumulative incidence.” The
higher the risk of the competing event, the more
pronounced the overestimation. Crucially, failure to
account for competing events during validation leads
to a distorted view on model performance, especially
for calibration.

Such distortion was recently revealed for an
internationally recommended prediction model of
kidney failure, which systematically overestimated
the absolute risk of kidney failure at five years in
patients with advanced chronic kidney disease. The

absolute overestimation by 10 percentage points on

average and by 37 percentage points in the highest
risk group could have resulted in overtreatment of
patients, which therefore led to the conclusion that
the model was unfit for use in this population. This
overestimation was missed in previous validation
efforts that ignored the competing event of death.” ® We
present model performance obtained when ignoring
the competing risk and when accounting for it side by
side in supplementary material 1.

For predicting binary and time-to-event outcomes,
useful guidance on how to perform model validation
exists.”'° For time-to-event outcomes with competing
risks, validation guidance is currently spread out over
many technical papers, which hampers the uptake
of appropriate methods in medical research. We aim
to provide an accessible overview of contemporary
performance measures for time-to-event outcomes
with competing risks. Our overview was made on
behalf of the international STRengthening Analytical
Thinking for Observational Studies (STRATOS)
initiative (http://stratos-initiative.org), which aims to
provide guidance documents for relevant topics in the
design and analysis of observational studies for a non-
specialist audience.'! We focus on how to calculate
and interpret performance measures with illustration
using a breast cancer prediction model, including
accompanying R code. Box 1 provides a list of glossary
terms used for the case study and throughout the
article.
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Box 1: Glossary

® Patients: Can also referto individuals or participants. We use the term “patients” to
match ourillustration using breast cancer data.

e Competing risks: The competing risks setting has multiple event types that compete
forfirst occurrence. In the case study, these events are breast cancer recurrence and
mortality before recurrence.

® Primary event: We assume one event type is the primary event of interest. In the case
study, the primary event is breast cancer recurrence.

e Prediction horizon: Specified duration of time for which predictions are made. In the
case study, we focus on five year risks.

e Cumulative incidence: Absolute risk of an individual experiencing the primary event
during the prediction horizon, taking into account that a patient who experiences a
competing event will never experience the primary event.

® Primary eventindicator: A patient’s primary event status by the end of the prediction
horizon. If a patient experienced the primary event before or at that time point, the
primary eventindicatoris 1. If the eventindicatoris 0, this value could mean that
eitherthe patient has not experienced any event by the end of the prediction horizon
orthe patient experienced a competing event by that time point.

e Censoring: When the patient’s event status by the end of the prediction horizon is
unknown (eg, owing to loss to follow-up at an earlier time point).

* Observed outcome proportion: Observed proportion of patients with the primary
event. In a setting without censoring, this proportion is the sum of the primary event
indicators divided by the total number of patients. With censoring, the observed
outcome proportions have to be estimated while accounting for the incomplete
observations. The observed outcome proportion represents the actual underlying
cumulative incidence.

* Risk estimates (or estimated risks): Estimates of cumulative incidence from the
developed prediction model. Typically, risks up to one ora few time points are of
particularinterest. The performance of these risk estimates need to be evaluated for
new patients.

Setting

In this article, we assume that a prediction model has
already been developed. The prediction model should
have been reported such that it allows calculating the
estimates of the cumulative incidence (or absolute
risk of an event) at the time point(s) of interest for
new patients (supplementary material 2). Our aim
is to validate this model in an external dataset while
accounting for competing events. Our focus is on
external validation studies. The same performance
measures could also be wused during internal
validation when combined with techniques such as
bootstrapping or cross validation.'? Typically, interest
is in the evaluation of the prediction of the primary
event occurring by one specific time point. If multiple
time points are of interest clinically, we might assess
performance at each of these time points or over a time
range until the last time point of interest.

Breast cancer case study

For illustration, we considered a simple competing
risks prediction model for the cumulative incidence
of breast cancer recurrence within five years after
diagnosis developed on the FOCUS cohort, a Dutch
cohort of consecutive patients with breast cancer,
aged 65 years and older. We used cause specific, Cox
proportional hazards, regression modelling with the
following four predictors: patient age at diagnosis,

tumour size, nodal status, and hormone receptor
status (supplementary material 2 and table 1).

We assessed the performance of this model in patient
data from the Netherlands Cancer Registry, which is a
different dataset to that used for model development.
We selected patients aged 70 years or older who
received a diagnosis of breast cancer between 2003
and 2009 in the Netherlands, received primary
breast surgery, and received no previous neoadjuvant
treatment. We used a random subset of 1000 patients
from the registry because this selection allowed us
to share the individual patient data as open access.
Among these 1000 patients, 103 recurrences and
187 non-recurrence deaths occurred within five years
(cumulative incidence curve in supplementary fig 1).

Performance measures for risk prediction models and
accounting for competing risks

We discuss performance measures for the following
four validation aspects: calibration, discrimination,
overall prediction error, and decision curve analysis,
and give the results of these performance measures
in our breast cancer case study. Corresponding R
functions are in table 2, and technical descriptions in
supplementary material 4.

Calibration

Calibration refers to the agreement between observed
outcome proportions and risk estimates from the
prediction model. For example, in the breast cancer
cohort, the model predicted a 14% absolute risk of
breast cancer recurrence by five years on average. This
implies that if the model is well calibrated on average,
we expect to observe a recurrence event in about 14%
of the patients in the validation set within five years.
Ideally, calibration is not only adequate on average
(known as calibration in the large), but also across the
entire range of predictions.

Calibration plot

Calibration plots offer a detailed view on calibration
by comparing observed and predicted outcomes
among patients with the same estimated risk. The
observed outcome proportions and estimated risks
by a particular time point of interest are plotted
against each other, with deviations from the diagonal
signalling miscalibration. A common approach divides
individuals into approximately equal groups based
on their risk estimates—for example, in tenths of
risk defined between deciles. Then, for each group,
the observed outcome proportion is plotted against
the estimated risk. The main challenge is how to
incorporate censored data and competing events into
the calculation of the observed outcome proportion.
With the grouping approach, the observed outcome
proportion can be estimated by use of the Aalen-
Johansen estimator (supplementary material 4).>""°
However, the grouping approach has been criticised
for its arbitrary categorisation and potential loss of
information, so we recommend the inclusion of a
smoothed curve in the calibration plot.'®

doi: 10.1136/bmj-2021-069249 | BMJ 2022;377:¢069249 | thebmj

1ybuAdoo
Ag pe1osioid “walsAssyaylolqig HByloldIgsISRNISIBAIUN T8 220 SUN( 6Z U0 /wod fwg mmmy/:dny woly papeojumod 'Zz0zZ AeN #Z U0 672690-TZ02-IWa/9ETT 0T Se paysiignd 1s1y :CINg


http://www.bmj.com/

RESEARCH METHODS AND REPORTING

Table 1 | Hazard ratios for the developed prediction model

Predictor at breast cancer diagnosis

Patient age (80 v 69 years)*

Cause specific hazard models (hazard ratio
(95% Cl))

Recurrence
1.18 (0.90 to 1.55)

Other cause mortality
3.41(2.76 to 4.24)

Size 3.0 v 1.4 cm)*

1.49 (1.25t01.78) 1.46 (1.26 t0 1.70)

Nodal status (positive v negative)

1.66 (1.18t02.35) 1.20(0.91 to 1.60)

Hormone receptor status (ER—/PR- v ER+ and/or PR+)

1.90 (1.31t02.78) 1.27 (0.90 to 1.80)

Baseline cumulative incidence at five yearst 0.14 0.18

ER=0estrogen receptor; PR=progesterone receptor.
*For representation purposes, hazard ratios for continuous predictors (age and size) are listed for the 75th

centile versus 25th centile.

tBaseline cumulative incidence is presented at the overall mean of the linear predictor in the model. To estimate
the cumulative incidence (that is, the absolute risk) of recurrence at five years for a new patient, the patient’s
predictor values for each event are first multiplied by the cause specific (log) hazard ratios and combined with
the cause specific baseline hazards. The resulting cause specific hazards for both events are then combined over
time up to and including five years (supplementary materials 2 and 4).

One approach of obtaining a smooth curve is using
pseudo-observations. These pseudo-observations
replace the primary event indicators, which gives a
proxy observed event indicator for all patients, even
those that were censored observations (box 1).!”
After this transformation into pseudo-observations, a
smooth curve can be obtained using a non-parametric
smoother of the observed outcome proportions (from
the validation data) versus estimated risks (from the
model).”® ¥ An alternative approach was recently
proposed where the smoothed curve is obtained as
predictions from a flexible regression model (box
1).%°%! For both the pseudo-observations approach and
the flexible regression approach, the calibration curve
will depend on the chosen strength of the smoothing—
that is, the span for the pseudo-observations approach
and the degree of flexibility (eg, number of knots when
using splines) in the flexible regression approach.
Advice on these choices can be found elsewhere.!® *!
The smoothed curve should only be plotted over the
range of observed risks and not extrapolated beyond.

The calibration plot for the breast cancer model
shows that the predicted cumulative incidence of
breast cancer recurrence at five years is too high at the
lower range of the estimated risks in the validation
cohort (fig 1, estimated using the pseudo-observations
approach). The calibration curve using the flexible
regression approach showed similar overestimation
(available from https://github.com/survival-lumc/
ValidationCompRisks).

Numerical summaries of calibration
A simple method to summarise overall calibration (or
calibration in the large) by a particular time point is
to use a ratio of observed and expected outcomes (O/E
ratio). An O/E ratio of 1 indicates perfect calibration
in the large, a ratio <1 indicates that on average the
model predictions are too high, and a ratio >1 indicates
that on average the model predictions are too low. In
the presence of competing events, the O/E ratio can
be calculated as the ratio of the observed outcome
proportion by the prediction horizon (estimated by
the Aalen-Johansen estimator'®) and the average risk
estimated by the prediction model under evaluation.
Supplementary material 3 shows an overview of
alternative ways to summarise overall calibration.
Another approach to numerically summarise the
calibration plot of predictions by a particular time
point is by calculating the calibration intercept and
calibration slope. For competing risks data, these can
be estimated using pseudo-observations, similar to
those proposed for ordinary survival.'® Supplementary
material 3 shows further details. If on average the risk
estimates equal the observed outcome proportions,
the calibration intercept will be zero. The calibration
slope equals 1 if the strength of the predictors matches
the observed strength in the validation set. The

Table 2 | Overview of performance measures for risk prediction models, with suggested R packages that offer implementation for competing risk

outcomes

Validation aspect and
performance measure

Interpretation

R package (function)

Calibration
Calibration plot How close is each estimated risk (or risk group) to the observed outcome proportion? riskRegression (plotCalibration)
O/E ratio How close is the estimated risk to the overall observed outcome proportion? Ratio of overall observed Available from GitHub*

outcome proportion to average estimated risk.

Calibration intercept

How close is the estimated risk to the overall observed outcome proportion? Intercept (on the log-
cumulative hazard scale) of the regression of observed outcomes with estimated risks as offset

Calibration slope

Are estimated risks too extreme (far apart) or too modest (homogeneous)?
Slope (on the log-cumulative hazard scale) of the regression of observed outcomes on estimated risks

Discrimination

Cindex

How well does the model separate those who experience the primary event earlier than others?

pec (cindex)

C/DAUC,

How well does the model separate those individuals who will and who will not experience the primary event timeROC (timeROC)

by a certain time point?

C/D AUC, curve

C/D AUC, calculated for each time point up to the time point of interest

Available from GitHub*

Prediction error

Brier score

How close are estimated risks to the observed primary event indicators? Brier score is the average squared

difference between estimated risks and primary event indicators

riskRegression (score)

Scaled Brier score

Scaled Brier score is the percentage reduction in Brier score compared to a null model

Decision curve analysis

Net benefit

What is the net result from correctly and falsely classified high risk patients? Weighted difference between

correctly and falsely classified patients, for a certain risk threshold

Available from GitHub*

Decision curve

Curve of net benefit over a plausible range of risk thresholds

O/E ratio=ratio of observed and expected outcomes; C/D AUC=cumulative/dynamic area under the receiving operator characteristic curve; c index=concordance index.
*https://github.com/survival-lumc/ValidationCompRisks.
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Calibration

Intercept: -0.15 (-0.36 to 0.05)

Discrimination
Auc(®): 0.71 (0.66 to 0.77)

Slope: 1.22 (0.84 to 1.60)
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Fig 1 | Calibration plot showing risk estimates of cumulative incidence of breast cancer
recurrence at five years against outcome proportions observed in the validation set. The
45° reference line indicates perfect calibration. The smooth curve including confidence
interval was estimated by a linear loess smoother on the pseudo-observations with

a span of 0.33.8" The histogram along the x axis indicates the distribution of risk

estimates

calibration intercept and slope can potentially be used
for recalibration of existing models to fit better in new
populations.?*?3

Returning to the breast cancer validation cohort
where we focus on the cumulative incidence of
recurrence up to five years, we observe a somewhat
too high estimated risk on average with an O/E ratio
of 0.81 (95% confidence interval 0.62 to 0.99; table
3). The calibration intercept was estimated at -0.15,
confirming the overestimation. For example, for
an estimated risk of 14%, the observed outcome
proportion was 1-0.86"(exp(-0.15))=12%. The
calibration slope was 1.22 (95% confidence interval
0.84 to 1.60), which would indicate predictions that
are slightly too homogeneous but the wide confidence
interval precludes any firm conclusions.

Discrimination: c index and area under the receiver
operating characteristic curve

As well as being well calibrated, useful prediction
models should have discriminative ability—that is,

Table 3 | Performance measures of risk prediction model in the external dataset of

patients with breast cancer

Validation aspect and performance measure

Calibration

Estimated values (95% ClI)

O/E ratio

0.81 (0.62 to 0.99)

Calibration intercept

-0.15 (-0.36 t0 0.05)

Calibration slope

1.22 (0.84 to 1.60)

Discrimination

Cindex up to five years

0.71 (0.67 to 0.76)

C/D AUC, at five years

0.71 (0.66 t0 0.77)

Prediction error

Brier score

0.09 (0.04 to 0.13)

Scaled Brier score (%)

5.7 (1.6 t0 8.2)

Decision curve analysis

Net benefit at 20% threshold

0.014

Cl=confidence interval; O/E ratio=ratio of observed and expected outcomes; C/D AUC=cumulative/dynamic area
under the receiving operator characteristic curve; ¢ index=concordance index.

assign higher risk estimates to patients who will
experience the primary event earlier than others. A
commonly used performance measure for assessing
discrimination over a certain time range is the c
index, also known as concordance index. The c index
assesses the ordering of predictions for all patient
pairs, where at least one patient has the event within
the prediction horizon and the other is not censored
earlier than that event.* The c index is the proportion
of these examinable pairs for which the patient with
the highest estimated risk is observed to experience the
event sooner than the other patient. Other versions of
the ¢ index have been proposed that depend less on
the study specific censoring mechanism.?” 2° The ¢
index ranges from 0.5 (no discriminating ability) to 1.0
(perfect ability to discriminate between patients with
different outcomes).

In the competing risks setting, two definitions of
comparison pairs have been considered (supplementary
material 4).>” When the target is evaluating cumulative
incidence, we propose to compare pairs where one
individual has the primary event within the prediction
horizon and the other either has the primary event
later or experiences a competing event. Such a pair is
considered concordant when the first individual has
the higher estimated risk. In the presence of censoring,
methods for inverse probability of censoring weighting
can be applied to estimate the ¢ index (box 2).%7 28

If interest is not in the full range of observed follow-
up but only in the ability of a model to predict the
event occurring by a single time point of interest (eg,
the five year recurrence risk), the cumulative/dynamic
area under the receiving operator characteristic curve
(AUCt) can serve as a measure of discrimination.?® The
calculation of AUC, is similar to the c index, except that
patient pairs are only compared if one patient has a
recurrence by five years and the other has a recurrence
later than five years or experiences the competing
event (non-recurrence mortality).’®3> The ordering
of two patients both having a recurrence within five
years, for example, after two years and after three
years, will not be in included in this calculation. The
AUC, can be calculated for multiple time points and
shown in a curve.

In the breast cancer data, the c index calculated for
the time range until five years of follow-up was 0.71
(95% confidence interval 0.67 to 0.76) and the AUC at
five years was 0.71 (0.66 to 0.77; table 3). The AUC,
showed a slightly decreasing trend over time with wide
confidence intervals (supplementary fig 2).

Overall prediction error

Overall model performance entails the overall ability of
the model to predict whether a patient experiences the
primary event by a particular time point, combining
both the calibration and the discrimination of a model.
The Brier score summarises the squared difference
between the event indicators and risk estimates.>>*®
For the competing risks setting, the Brier score is the
average squared difference between the primary event
indicators at the end of the prediction horizon and
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Box 2: Techniques for estimating performance measures from competing risks
data in the presence of censoring

Pseudo-observations

¢ A pseudo-observation is used as a proxy measure of the primary eventindicator of
each patient

¢ The pseudo-observations are calculated as the weighted difference between the
cumulative incidence estimate at the prediction horizon based on all patients and
the same quantity estimated after leaving that patient out

* The advantage of pseudo-observations is that censored patients (forwhom the
primary event indicator is unknown) will have a pseudo-observation and can
contribute to the calculation of the observed outcome proportion in a straightforward
way

Smoothing using a flexible regression model

e The primary event is regressed on (a complementary log-log transformation of)
the risk estimates, using restricted cubic splines to allow a non-linear relation. The
shape and degree of smoothing is chosen by specifying the numberand location of
knots. Austin et al have proposed using a Fine and Gray model in this step° !

® Observed outcome proportions are estimated using the flexible regression model for
all patients, including patients with a censored event status

Inverse probability of censoring weighting (IPCW)

* [PCW can create a hypothetical population that would have been observed had no
censoring occurred

¢ This hypothetical population can be achieved by up-weighting patients who are
similar to censored patients but remain in the study longer—that is, observations
that were not likely to remain in follow-up are up-weighted

* The weights are estimated from a survival model with censoring as the outcome

e Observations are then weighted inversely to their probability of not being censored

the absolute risk estimates by that time point.'® 3

Weighting techniques or pseudo-observations can
account for censoring (box 2).>¢37

The Brier score can range from 0, for a perfect
model, to 0.25, for a non-informative model in a
dataset with an overall 50% event occurrence. When
the overall outcome risk is lower, the maximum
score for a non-informative model is lower, which
complicates interpretation. Therefore, a scaled version

Box 3: Net benefit for competing risks data

¢ Suppose thata physician finds it reasonable that, to treat one patient who would
otherwise develop a recurrence within five years (eg, with adjuvant systemic
treatment), at most four patients are treated unnecessarily. This number means that
at least 20% of treatments should be justified, implying a risk threshold of 20%.

¢ The benefit of a prediction model is defined as the proportion of patients who are
correctly classified as high risk. In the presence of competing events, this proportion
can be calculated as the cumulative incidence of recurrence among patients with
estimated risk 220%, multiplied by the proportion of all patients with risk 220%.

e The harm from using the modelis defined as the proportion of patients who
are incorrectly classified as high risk. With competing events, this proportion
is calculated as: 1-cumulative incidence among patients with estimated
risk exceeding 20% multiplied by the probability of exceeding that threshold
(supplementary material 4).%*

* The net benefitis the benefit minus the harm, in which the harm is assigned a
weight. This weight is determined by the risk threshold. Here, we find it reasonable
that at least 20% (one in five) treatments is justified, implying that the harm of an
unnecessary treatment is considered four times smaller than the benefit of a justified
treatment. The weight is therefore 1+4.41444

thebmj | BMJ2022;377:¢069249 | doi: 10.1136/bmj-2021-069249

of the Brier score has been proposed: 1-(model Brier
scorexnull model Brier score).>* 3% The null model
(without covariates) is a model that estimates the risk
equally for all individuals and can in the setting of
competing events be estimated by the Aalen-Johansen
estimator.”> The scaled Brier score can be interpreted
as an R? type of measure, representing the amount of
prediction error in a null model that is explained by the
prediction model. A 100% Brier score corresponds to
a perfect model, 0% to an ineffective model, and <0%
to a harmful model in the sense that the predictions
are further away from the observed data than the null
model estimating the average risk for each patient.

In the breast cancer validation cohort, the Brier
score (where a lower score is better) was 0.09 (95%
confidence interval 0.04 to 0.13; table 3). The scaled
Brier score (Where a higher percentage is better) showed
that 5.7% (1.6% to 8.2%; table 3) of prediction error
was explained, which we consider to be fairly low.

Decision curve analysis

Discrimination, calibration, and overall prediction
error as described above are important when
validating a prediction model, but do not tell us
whether the model would do more good than harm
if used in clinical practice (clinical usefulness).*! 2
To use a risk model for making decisions, we have to
choose a risk threshold. Patients with a risk exceeding
the threshold are selected for additional clinical
interventions. Use of the risk model in this way leads
to justified interventions (interventions in patients
who would develop recurrence) and unnecessary
interventions (interventions in patients who would not
develop recurrence). The net benefit statistic is based
on the proportion of justified interventions minus
the proportion of unnecessary interventions (box 3).
However, this statistic assigns a weight to the proportion
of unnecessary interventions. This weight is related
to the chosen threshold: the lower the threshold, the
more we value justified interventions and the more
we accept unnecessary interventions. The choice of
the threshold depends on the (perceived) benefits
and harms of the intervention. For example, a highly
effective intervention with few side effects suggests the
use of a low threshold. Different clinicians and patients
might prefer different thresholds. Therefore, net benefit
can be calculated for a range of reasonable thresholds,
resulting in a decision curve.”* ** The decision curve of
amodel is commonly compared to a reference scenario
in which all patients receive the intervention (treat all;
fig 2) and another scenario in which no intervention is
given (treat none).

The decision curve in figure 2 shows the net benefit
for predicting recurrence within five years, based on
the validation data. With a risk threshold of 20% (box
3), the net benefit was 0.014 (table 3). This net result
of 14 of 1000 patients is made up of 34 patients whom
the prediction model points out correctly as they would
develop recurrence if untreated (benefit) versus 81
patients whom the model points out incorrectly and
are overtreated (harm). Given the weight of(Continued)
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Net benefit

—— Treat all
Treat none
————— Prediction model

0.2 0.3 0.4 0.5

1:9 1:4) @3:7) (2:3) 1:1

Threshold probability
(harm to benefit ratio)

Fig 2 | Decision curve for validation of prediction model developed to estimate the
absolute risk of breast cancer recurrence. Prediction model=scenario where predictions
from the model are compared to the threshold probabilities to decide which patients
receive the intervention; Treat all=scenario where all patients receive the intervention;
Treat none= scenario where no patients receive the intervention

1+4 implied by the risk threshold (box 3), subtracting
the weighted harm from the benefit leads to the net
result of 34-(81+4)=14 net more benefiting patients
when applying the prediction model to 1000 patients.

A net benefit greater than zero and exceeding that
of the reference scenarios suggests that the prediction
model can add value to clinical decision making. The
decision of whether to implement a model in practice
will be further based on practical considerations such as
costs and ease with which the information needed in the
model can be obtained. In our breast cancer illustration,
all four variables are readily available; but in other cases,
covariate information can be expensive or invasive
to obtain. Preferably a formal impact trial should be
performed to obtain definite evidence on the usefulness
of a prediction model for clinical decision making.*®

Conclusion

This article provides an overview of performance
measures for a comprehensive assessment of the
performance of a prediction model in the presence of
competing risks. This assessment typically requires
specialist techniques to process censored data such
as reweighing the observations or using pseudo-
observations. Contemporary, free software facilitates
all the described approaches. The methods can be used
for validating any developed time-to-event prediction
model, as long as the reporting enables calculation
of absolute risk estimates for new patients at the time
point(s) of interest.

We recognise that other performance measures
are available that have not been described in this
overview, which might be important under specific
circumstances. For example, methods have been
proposed for evaluating estimated absolute risks for
several or all competing events at the same time.*” *®
Also, with exception of the c index and AUC, curve, we
limited our descriptions to evaluating absolute risk
predictions by one specific time point, because it is
relevant for most clinical prediction problems. Several
of the performance measures that we described can

be extended to evaluating predictions by multiple
time points or over the entire range of follow-up.
Furthermore, we note that large sample sizes are often
required for a reliable assessment of performance.*’>!
The discussed performance measures relate to the full
risk distribution (calibration, discrimination, overall
performance) and to a decision analysis perspective
(with the potential impact to obtain better patient
outcomes). These measures are in line with the TRIPOD
guidelines, which form a key framework for reporting of
prediction models, including the increasingly common
competing risks prediction models.>?
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