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Validation of prediction models in the presence of competing 
risks: a guide through modern methods
Nan van Geloven,1 Daniele Giardiello,1,2 Edouard F Bonneville,1 Lucy Teece,3 Chava L Ramspek,4 
Maarten van Smeden,5 Kym I E Snell,3 Ben van Calster,1,6 Maja Pohar-Perme,7 Richard D Riley,3 
Hein Putter,1 Ewout Steyerberg,1,8 on behalf of the STRATOS initiative

Thorough validation is pivotal for any 
prediction model before it can be 
advocated for use in medical practice. 
For time-to-event outcomes such as 
breast cancer recurrence, death from 
other causes is a competing risk. Model 
performance measures must account 
for such competing events. In this 
article, we present a comprehensive 
yet accessible overview of performance 
measures for this competing event 
setting, including the calculation and 
interpretation of statistical measures 
for calibration, discrimination, overall 
prediction error, and clinical usefulness 
by decision curve analysis. All methods 
are illustrated for patients with breast 
cancer, with publicly available data and 
R code.

Prediction models are pivotal for counselling patients 
about their prognosis and for risk stratification.1 
Interest often lies in predicting a non-fatal adverse 
event over a certain time period, for example, breast 
cancer recurrence within five years after diagnosis. As 
study populations of common diseases increasingly 
consist of elderly individuals with high degrees 
of multimorbidity, patients will experience other 
events that preclude the occurrence of the event of 
interest.2 For example, a patient with a previous 
breast cancer who dies from a cardiovascular cause 
can no longer experience breast cancer recurrence. 

In these settings, prediction models should target 
the cumulative incidence (or absolute risk3) of the 
adverse event, which is defined as the probability 
of the event of interest occurring by a particular 
time point with no other competing event occurring 
earlier. In the breast cancer example, the cumulative 
incidence of recurrence at five years is the risk of 
developing a recurrence within five years, taking into 
account that patients who die within five years cannot 
develop recurrence anymore. Failing to account for 
competing events during model development leads 
to overestimation of the cumulative incidence.4 The 
higher the risk of the competing event, the more 
pronounced the overestimation. Crucially, failure to 
account for competing events during validation leads 
to a distorted view on model performance, especially 
for calibration. 

Such distortion was recently revealed for an 
internationally recommended prediction model of 
kidney failure, which systematically overestimated 
the absolute risk of kidney failure at five years in 
patients with advanced chronic kidney disease. The 
absolute overestimation by 10 percentage points on 
average and by 37 percentage points in the highest 
risk group could have resulted in overtreatment of 
patients, which therefore led to the conclusion that 
the model was unfit for use in this population. This 
overestimation was missed in previous validation 
efforts that ignored the competing event of death.5 6 We 
present model performance obtained when ignoring 
the competing risk and when accounting for it side by 
side in supplementary material 1.

For predicting binary and time-to-event outcomes, 
useful guidance on how to perform model validation 
exists.7-10 For time-to-event outcomes with competing 
risks, validation guidance is currently spread out over 
many technical papers, which hampers the uptake 
of appropriate methods in medical research. We aim 
to provide an accessible overview of contemporary 
performance measures for time-to-event outcomes 
with competing risks. Our overview was made on 
behalf of the international STRengthening Analytical 
Thinking for Observational Studies (STRATOS) 
initiative (http://stratos-initiative.org), which aims to 
provide guidance documents for relevant topics in the 
design and analysis of observational studies for a non-
specialist audience.11 We focus on how to calculate 
and interpret performance measures with illustration 
using a breast cancer prediction model, including 
accompanying R code. Box 1 provides a list of glossary 
terms used for the case study and throughout the 
article.
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Summary points
Validation is a necessary step for prediction models before they are used in 
clinical practice
In the presence of competing risks, these other risks have to be accounted for at 
model validation
This article provides a comprehensive overview of performance measures for 
calibration, discrimination, overall prediction error, and decision curve analysis 
that account for competing events
Data and the R code used for illustration of the measures are available from 
https://github.com/survival-lumc/ValidationCompRisks
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Setting
In this article, we assume that a prediction model has 
already been developed. The prediction model should 
have been reported such that it allows calculating the 
estimates of the cumulative incidence (or absolute 
risk of an event) at the time point(s) of interest for 
new patients (supplementary material 2). Our aim 
is to validate this model in an external dataset while 
accounting for competing events. Our focus is on 
external validation studies. The same performance 
measures could also be used during internal 
validation when combined with techniques such as 
bootstrapping or cross validation.12 Typically, interest 
is in the evaluation of the prediction of the primary 
event occurring by one specific time point. If multiple 
time points are of interest clinically, we might assess 
performance at each of these time points or over a time 
range until the last time point of interest.

Breast cancer case study
For illustration, we considered a simple competing 
risks prediction model for the cumulative incidence 
of breast cancer recurrence within five years after 
diagnosis developed on the FOCUS cohort, a Dutch 
cohort of consecutive patients with breast cancer, 
aged 65 years and older. We used cause specific, Cox 
proportional hazards, regression modelling with the 
following four predictors: patient age at diagnosis, 

tumour size, nodal status, and hormone receptor 
status (supplementary material 2 and table 1).

We assessed the performance of this model in patient 
data from the Netherlands Cancer Registry, which is a 
different dataset to that used for model development. 
We selected patients aged 70 years or older who 
received a diagnosis of breast cancer between 2003 
and 2009 in the Netherlands, received primary 
breast surgery, and received no previous neoadjuvant 
treatment. We used a random subset of 1000 patients 
from the registry because this selection allowed us 
to share the individual patient data as open access. 
Among these 1000 patients, 103 recurrences and 
187 non-recurrence deaths occurred within five years 
(cumulative incidence curve in supplementary fig 1).

Performance measures for risk prediction models and 
accounting for competing risks
We discuss performance measures for the following 
four validation aspects: calibration, discrimination, 
overall prediction error, and decision curve analysis, 
and give the results of these performance measures 
in our breast cancer case study. Corresponding R 
functions are in table 2, and technical descriptions in 
supplementary material 4.

Calibration
Calibration refers to the agreement between observed 
outcome proportions and risk estimates from the 
prediction model. For example, in the breast cancer 
cohort, the model predicted a 14% absolute risk of 
breast cancer recurrence by five years on average. This 
implies that if the model is well calibrated on average, 
we expect to observe a recurrence event in about 14% 
of the patients in the validation set within five years. 
Ideally, calibration is not only adequate on average 
(known as calibration in the large), but also across the 
entire range of predictions.

Calibration plot
Calibration plots offer a detailed view on calibration 
by comparing observed and predicted outcomes 
among patients with the same estimated risk. The 
observed outcome proportions and estimated risks 
by a particular time point of interest are plotted 
against each other, with deviations from the diagonal 
signalling miscalibration. A common approach divides 
individuals into approximately equal groups based 
on their risk estimates—for example, in tenths of 
risk defined between deciles. Then, for each group, 
the observed outcome proportion is plotted against 
the estimated risk. The main challenge is how to 
incorporate censored data and competing events into 
the calculation of the observed outcome proportion. 
With the grouping approach, the observed outcome 
proportion can be estimated by use of the Aalen-
Johansen estimator (supplementary material 4).13-15 
However, the grouping approach has been criticised 
for its arbitrary categorisation and potential loss of 
information, so we recommend the inclusion of a 
smoothed curve in the calibration plot.16

Box 1: Glossary
•	Patients: Can also refer to individuals or participants. We use the term “patients” to 

match our illustration using breast cancer data.
•	Competing risks: The competing risks setting has multiple event types that compete 

for first occurrence. In the case study, these events are breast cancer recurrence and 
mortality before recurrence.

•	Primary event: We assume one event type is the primary event of interest. In the case 
study, the primary event is breast cancer recurrence.

•	Prediction horizon: Specified duration of time for which predictions are made. In the 
case study, we focus on five year risks.

•	Cumulative incidence: Absolute risk of an individual experiencing the primary event 
during the prediction horizon, taking into account that a patient who experiences a 
competing event will never experience the primary event.

•	Primary event indicator: A patient’s primary event status by the end of the prediction 
horizon. If a patient experienced the primary event before or at that time point, the 
primary event indicator is 1. If the event indicator is 0, this value could mean that 
either the patient has not experienced any event by the end of the prediction horizon 
or the patient experienced a competing event by that time point.

•	Censoring: When the patient’s event status by the end of the prediction horizon is 
unknown (eg, owing to loss to follow-up at an earlier time point).

•	Observed outcome proportion: Observed proportion of patients with the primary 
event. In a setting without censoring, this proportion is the sum of the primary event 
indicators divided by the total number of patients. With censoring, the observed 
outcome proportions have to be estimated while accounting for the incomplete 
observations. The observed outcome proportion represents the actual underlying 
cumulative incidence.

•	Risk estimates (or estimated risks): Estimates of cumulative incidence from the 
developed prediction model. Typically, risks up to one or a few time points are of 
particular interest. The performance of these risk estimates need to be evaluated for 
new patients.
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One approach of obtaining a smooth curve is using 
pseudo-observations. These pseudo-observations 
replace the primary event indicators, which gives a 
proxy observed event indicator for all patients, even 
those that were censored observations (box 1).17 
After this transformation into pseudo-observations, a 
smooth curve can be obtained using a non-parametric 
smoother of the observed outcome proportions (from 
the validation data) versus estimated risks (from the 
model).18 19 An alternative approach was recently 
proposed where the smoothed curve is obtained as 
predictions from a flexible regression model (box 
1).20 21 For both the pseudo-observations approach and 
the flexible regression approach, the calibration curve 
will depend on the chosen strength of the smoothing—
that is, the span for the pseudo-observations approach 
and the degree of flexibility (eg, number of knots when 
using splines) in the flexible regression approach. 
Advice on these choices can be found elsewhere.18 21 
The smoothed curve should only be plotted over the 
range of observed risks and not extrapolated beyond.

The calibration plot for the breast cancer model 
shows that the predicted cumulative incidence of 
breast cancer recurrence at five years is too high at the 
lower range of the estimated risks in the validation 
cohort (fig 1, estimated using the pseudo-observations 
approach). The calibration curve using the flexible 
regression approach showed similar overestimation 
(available from https://github.com/survival-lumc/
ValidationCompRisks).

Numerical summaries of calibration
A simple method to summarise overall calibration (or 
calibration in the large) by a particular time point is 
to use a ratio of observed and expected outcomes (O/E 
ratio). An O/E ratio of 1 indicates perfect calibration 
in the large, a ratio <1 indicates that on average the 
model predictions are too high, and a ratio >1 indicates 
that on average the model predictions are too low. In 
the presence of competing events, the O/E ratio can 
be calculated as the ratio of the observed outcome 
proportion by the prediction horizon (estimated by 
the Aalen-Johansen estimator13) and the average risk 
estimated by the prediction model under evaluation. 
Supplementary material 3 shows an overview of 
alternative ways to summarise overall calibration.

Another approach to numerically summarise the 
calibration plot of predictions by a particular time 
point is by calculating the calibration intercept and 
calibration slope. For competing risks data, these can 
be estimated using pseudo-observations, similar to 
those proposed for ordinary survival.19 Supplementary 
material 3 shows further details. If on average the risk 
estimates equal the observed outcome proportions, 
the calibration intercept will be zero. The calibration 
slope equals 1 if the strength of the predictors matches 
the observed strength in the validation set. The 

Table 1 | Hazard ratios for the developed prediction model

Predictor at breast cancer diagnosis
Cause specific hazard models (hazard ratio 
(95% CI))
Recurrence Other cause mortality

Patient age (80 v 69 years)* 1.18 (0.90 to 1.55) 3.41 (2.76 to 4.24)
Size (3.0 v 1.4 cm)* 1.49 (1.25 to 1.78) 1.46 (1.26 to 1.70)
Nodal status (positive v negative) 1.66 (1.18 to 2.35) 1.20 (0.91 to 1.60)
Hormone receptor status (ER−/PR− v ER+ and/or PR+) 1.90 (1.31 to 2.78) 1.27 (0.90 to 1.80)
Baseline cumulative incidence at five years† 0.14 0.18
ER=oestrogen receptor; PR=progesterone receptor. 
*For representation purposes, hazard ratios for continuous predictors (age and size) are listed for the 75th 
centile versus 25th centile. 
†Baseline cumulative incidence is presented at the overall mean of the linear predictor in the model. To estimate 
the cumulative incidence (that is, the absolute risk) of recurrence at five years for a new patient, the patient’s 
predictor values for each event are first multiplied by the cause specific (log) hazard ratios and combined with 
the cause specific baseline hazards. The resulting cause specific hazards for both events are then combined over 
time up to and including five years (supplementary materials 2 and 4). 

Table 2 | Overview of performance measures for risk prediction models, with suggested R packages that offer implementation for competing risk 
outcomes
Validation aspect and  
performance measure Interpretation R package (function)
Calibration
Calibration plot How close is each estimated risk (or risk group) to the observed outcome proportion? riskRegression (plotCalibration)
O/E ratio How close is the estimated risk to the overall observed outcome proportion? Ratio of overall observed 

outcome proportion to average estimated risk.
Available from GitHub*

Calibration intercept How close is the estimated risk to the overall observed outcome proportion? Intercept (on the log-
cumulative hazard scale) of the regression of observed outcomes with estimated risks as offset

Calibration slope Are estimated risks too extreme (far apart) or too modest (homogeneous)? 
Slope (on the log-cumulative hazard scale) of the regression of observed outcomes on estimated risks

Discrimination
C index How well does the model separate those who experience the primary event earlier than others? pec (cindex)
C/D AUCt How well does the model separate those individuals who will and who will not experience the primary event 

by a certain time point? 
timeROC (timeROC)

C/D AUCt curve C/D AUCt calculated for each time point up to the time point of interest Available from GitHub*
Prediction error
Brier score How close are estimated risks to the observed primary event indicators? Brier score is the average squared 

difference between estimated risks and primary event indicators
riskRegression (score)

Scaled Brier score Scaled Brier score is the percentage reduction in Brier score compared to a null model
Decision curve analysis
Net benefit What is the net result from correctly and falsely classified high risk patients? Weighted difference between 

correctly and falsely classified patients, for a certain risk threshold
Available from GitHub*

Decision curve Curve of net benefit over a plausible range of risk thresholds
O/E ratio=ratio of observed and expected outcomes; C/D AUCt=cumulative/dynamic area under the receiving operator characteristic curve; c index=concordance index.
*https://github.com/survival-lumc/ValidationCompRisks.
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calibration intercept and slope can potentially be used 
for recalibration of existing models to fit better in new 
populations.22 23

Returning to the breast cancer validation cohort 
where we focus on the cumulative incidence of 
recurrence up to five years, we observe a somewhat 
too high estimated risk on average with an O/E ratio 
of 0.81 (95% confidence interval 0.62 to 0.99; table 
3). The calibration intercept was estimated at −0.15, 
confirming the overestimation. For example, for 
an estimated risk of 14%, the observed outcome 
proportion was 1−0.86^(exp(−0.15))=12%. The 
calibration slope was 1.22 (95% confidence interval 
0.84 to 1.60), which would indicate predictions that 
are slightly too homogeneous but the wide confidence 
interval precludes any firm conclusions.

Discrimination: c index and area under the receiver 
operating characteristic curve
As well as being well calibrated, useful prediction 
models should have discriminative ability—that is, 

assign higher risk estimates to patients who will 
experience the primary event earlier than others. A 
commonly used performance measure for assessing 
discrimination over a certain time range is the c 
index, also known as concordance index. The c index 
assesses the ordering of predictions for all patient 
pairs, where at least one patient has the event within 
the prediction horizon and the other is not censored 
earlier than that event.24 The c index is the proportion 
of these examinable pairs for which the patient with 
the highest estimated risk is observed to experience the 
event sooner than the other patient. Other versions of 
the c index have been proposed that depend less on 
the study specific censoring mechanism.25 26 The c 
index ranges from 0.5 (no discriminating ability) to 1.0 
(perfect ability to discriminate between patients with 
different outcomes).

In the competing risks setting, two definitions of 
comparison pairs have been considered (supplementary 
material 4).27 When the target is evaluating cumulative 
incidence, we propose to compare pairs where one 
individual has the primary event within the prediction 
horizon and the other either has the primary event 
later or experiences a competing event. Such a pair is 
considered concordant when the first individual has 
the higher estimated risk. In the presence of censoring, 
methods for inverse probability of censoring weighting 
can be applied to estimate the c index (box 2).27 28

If interest is not in the full range of observed follow-
up but only in the ability of a model to predict the 
event occurring by a single time point of interest (eg, 
the five year recurrence risk), the cumulative/dynamic 
area under the receiving operator characteristic curve 
(AUCt) can serve as a measure of discrimination.29 The 
calculation of AUCt is similar to the c index, except that 
patient pairs are only compared if one patient has a 
recurrence by five years and the other has a recurrence 
later than five years or experiences the competing 
event (non-recurrence mortality).30-32 The ordering 
of two patients both having a recurrence within five 
years, for example, after two years and after three 
years, will not be in included in this calculation. The 
AUCt can be calculated for multiple time points and 
shown in a curve.

In the breast cancer data, the c index calculated for 
the time range until five years of follow-up was 0.71 
(95% confidence interval 0.67 to 0.76) and the AUC at 
five years was 0.71 (0.66 to 0.77; table 3). The AUCt 
showed a slightly decreasing trend over time with wide 
confidence intervals (supplementary fig 2).

Overall prediction error
Overall model performance entails the overall ability of 
the model to predict whether a patient experiences the 
primary event by a particular time point, combining 
both the calibration and the discrimination of a model. 
The Brier score summarises the squared difference 
between the event indicators and risk estimates.33-35 
For the competing risks setting, the Brier score is the 
average squared difference between the primary event 
indicators at the end of the prediction horizon and 
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Fig 1 | Calibration plot showing risk estimates of cumulative incidence of breast cancer 
recurrence at five years against outcome proportions observed in the validation set. The 
45° reference line indicates perfect calibration. The smooth curve including confidence 
interval was estimated by a linear loess smoother on the pseudo-observations with 
a span of 0.33.18 19 The histogram along the x axis indicates the distribution of risk 
estimates

Table 3 | Performance measures of risk prediction model in the external dataset of 
patients with breast cancer
Validation aspect and performance measure Estimated values (95% CI)
Calibration
O/E ratio 0.81 (0.62 to 0.99)
Calibration intercept −0.15 (−0.36 to 0.05)
Calibration slope 1.22 (0.84 to 1.60)
Discrimination
C index up to five years 0.71 (0.67 to 0.76)
C/D AUCt at five years 0.71 (0.66 to 0.77)
Prediction error 
Brier score 0.09 (0.04 to 0.13)
Scaled Brier score (%) 5.7 (1.6 to 8.2)
Decision curve analysis 
Net benefit at 20% threshold 0.014
CI=confidence interval; O/E ratio=ratio of observed and expected outcomes; C/D AUCt=cumulative/dynamic area 
under the receiving operator characteristic curve; c index=concordance index.
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the absolute risk estimates by that time point.18  36 
Weighting techniques or pseudo-observations can 
account for censoring (box 2).36 37

The Brier score can range from 0, for a perfect 
model, to 0.25, for a non-informative model in a 
dataset with an overall 50% event occurrence. When 
the overall outcome risk is lower, the maximum 
score for a non-informative model is lower, which 
complicates interpretation. Therefore, a scaled version 

of the Brier score has been proposed: 1−(model Brier 
score÷null model Brier score).34 38-40 The null model 
(without covariates) is a model that estimates the risk 
equally for all individuals and can in the setting of 
competing events be estimated by the Aalen-Johansen 
estimator.13 The scaled Brier score can be interpreted 
as an R2 type of measure, representing the amount of 
prediction error in a null model that is explained by the 
prediction model. A 100% Brier score corresponds to 
a perfect model, 0% to an ineffective model, and <0% 
to a harmful model in the sense that the predictions 
are further away from the observed data than the null 
model estimating the average risk for each patient.

In the breast cancer validation cohort, the Brier 
score (where a lower score is better) was 0.09 (95% 
confidence interval 0.04 to 0.13; table 3). The scaled 
Brier score (where a higher percentage is better) showed 
that 5.7% (1.6% to 8.2%; table 3) of prediction error 
was explained, which we consider to be fairly low.

Decision curve analysis
Discrimination, calibration, and overall prediction 
error as described above are important when 
validating a prediction model, but do not tell us 
whether the model would do more good than harm 
if used in clinical practice (clinical usefulness).41 42 
To use a risk model for making decisions, we have to 
choose a risk threshold. Patients with a risk exceeding 
the threshold are selected for additional clinical 
interventions. Use of the risk model in this way leads 
to justified interventions (interventions in patients 
who would develop recurrence) and unnecessary 
interventions (interventions in patients who would not 
develop recurrence). The net benefit statistic is based 
on the proportion of justified interventions minus 
the proportion of unnecessary interventions (box 3). 
However, this statistic assigns a weight to the proportion 
of unnecessary interventions. This weight is related 
to the chosen threshold: the lower the threshold, the 
more we value justified interventions and the more 
we accept unnecessary interventions. The choice of 
the threshold depends on the (perceived) benefits 
and harms of the intervention. For example, a highly 
effective intervention with few side effects suggests the 
use of a low threshold. Different clinicians and patients 
might prefer different thresholds. Therefore, net benefit 
can be calculated for a range of reasonable thresholds, 
resulting in a decision curve.41 43 The decision curve of 
a model is commonly compared to a reference scenario 
in which all patients receive the intervention (treat all; 
fig 2) and another scenario in which no intervention is 
given (treat none).

The decision curve in figure 2 shows the net benefit 
for predicting recurrence within five years, based on 
the validation data. With a risk threshold of 20% (box 
3), the net benefit was 0.014 (table 3). This net result 
of 14 of 1000 patients is made up of 34 patients whom 
the prediction model points out correctly as they would 
develop recurrence if untreated (benefit) versus 81 
patients whom the model points out incorrectly and 
are overtreated (harm). Given the weight of (Continued)

Box 2: Techniques for estimating performance measures from competing risks 
data in the presence of censoring

Pseudo-observations
•	A pseudo-observation is used as a proxy measure of the primary event indicator of 

each patient
•	The pseudo-observations are calculated as the weighted difference between the 

cumulative incidence estimate at the prediction horizon based on all patients and 
the same quantity estimated after leaving that patient out

•	The advantage of pseudo-observations is that censored patients (for whom the 
primary event indicator is unknown) will have a pseudo-observation and can 
contribute to the calculation of the observed outcome proportion in a straightforward 
way

Smoothing using a flexible regression model
•	The primary event is regressed on (a complementary log-log transformation of) 

the risk estimates, using restricted cubic splines to allow a non-linear relation. The 
shape and degree of smoothing is chosen by specifying the number and location of 
knots. Austin et al have proposed using a Fine and Gray model in this step20 21

•	Observed outcome proportions are estimated using the flexible regression model for 
all patients, including patients with a censored event status

Inverse probability of censoring weighting (IPCW)
•	IPCW can create a hypothetical population that would have been observed had no 

censoring occurred
•	This hypothetical population can be achieved by up-weighting patients who are 

similar to censored patients but remain in the study longer—that is, observations 
that were not likely to remain in follow-up are up-weighted

•	The weights are estimated from a survival model with censoring as the outcome
•	Observations are then weighted inversely to their probability of not being censored

Box 3: Net benefit for competing risks data
•	Suppose that a physician finds it reasonable that, to treat one patient who would 

otherwise develop a recurrence within five years (eg, with adjuvant systemic 
treatment), at most four patients are treated unnecessarily. This number means that 
at least 20% of treatments should be justified, implying a risk threshold of 20%.

•	The benefit of a prediction model is defined as the proportion of patients who are 
correctly classified as high risk. In the presence of competing events, this proportion 
can be calculated as the cumulative incidence of recurrence among patients with 
estimated risk ≥20%, multiplied by the proportion of all patients with risk ≥20%.

•	The harm from using the model is defined as the proportion of patients who 
are incorrectly classified as high risk. With competing events, this proportion 
is calculated as: 1−cumulative incidence among patients with estimated 
risk exceeding 20% multiplied by the probability of exceeding that threshold 
(supplementary material 4).43

•	The net benefit is the benefit minus the harm, in which the harm is assigned a 
weight. This weight is determined by the risk threshold. Here, we find it reasonable 
that at least 20% (one in five) treatments is justified, implying that the harm of an 
unnecessary treatment is considered four times smaller than the benefit of a justified 
treatment. The weight is therefore 1÷4.41 44 45
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1÷4 implied by the risk threshold (box 3), subtracting 
the weighted harm from the benefit leads to the net 
result of 34−(81÷4)=14 net more benefiting patients 
when applying the prediction model to 1000 patients.

A net benefit greater than zero and exceeding that 
of the reference scenarios suggests that the prediction 
model can add value to clinical decision making. The 
decision of whether to implement a model in practice 
will be further based on practical considerations such as 
costs and ease with which the information needed in the 
model can be obtained. In our breast cancer illustration, 
all four variables are readily available; but in other cases, 
covariate information can be expensive or invasive 
to obtain. Preferably a formal impact trial should be 
performed to obtain definite evidence on the usefulness 
of a prediction model for clinical decision making.46

Conclusion
This article provides an overview of performance 
measures for a comprehensive assessment of the 
performance of a prediction model in the presence of 
competing risks. This assessment typically requires 
specialist techniques to process censored data such 
as reweighing the observations or using pseudo-
observations. Contemporary, free software facilitates 
all the described approaches. The methods can be used 
for validating any developed time-to-event prediction 
model, as long as the reporting enables calculation 
of absolute risk estimates for new patients at the time 
point(s) of interest.

We recognise that other performance measures 
are available that have not been described in this 
overview, which might be important under specific 
circumstances. For example, methods have been 
proposed for evaluating estimated absolute risks for 
several or all competing events at the same time.47 48 
Also, with exception of the c index and AUCt curve, we 
limited our descriptions to evaluating absolute risk 
predictions by one specific time point, because it is 
relevant for most clinical prediction problems. Several 
of the performance measures that we described can 

be extended to evaluating predictions by multiple 
time points or over the entire range of follow-up. 
Furthermore, we note that large sample sizes are often 
required for a reliable assessment of performance.49-51

The discussed performance measures relate to the full 
risk distribution (calibration, discrimination, overall 
performance) and to a decision analysis perspective 
(with the potential impact to obtain better patient 
outcomes). These measures are in line with the TRIPOD 
guidelines, which form a key framework for reporting of 
prediction models, including the increasingly common 
competing risks prediction models.52
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