Validation for Survival Data

STRATOS: David McLernon, ..., Terry Therneau

July 12, 2022

Big picture

- Stop and think: what is the target?
- Survival data is not yes/no bionomial
 - But we can copy some ideas
- ► There are a *lot* of papers (not all good)
- ► High level
 - Match method to the target
 - Censoring drives technical issues

- ► Reference model + new situation
 - ▶ Is the model useful in this context?

- Reference model + new situation
 - Is the model useful in this context?
- Define "useful"
 - Stratify subjects for a clinical trial
 - Make treatment choices
 - Counsel a patient
 - ▶ Make global statements about the model itself
 - Understand the model better

- Reference model + new situation
 - Is the model useful in this context?
- Define "useful"
 - Stratify subjects for a clinical trial
 - Make treatment choices
 - Counsel a patient
 - Make global statements about the model itself
 - Understand the model better

"If you don't know where you are going, you might end up someplace else." Yogi Berra

In pratice, this often leads to a time horizon $\boldsymbol{\tau}$

Utility is focused on an interval

In pratice, this often leads to a time horizon $\boldsymbol{\tau}$

- ▶ Utility is focused on an interval
- ► Limited data

In pratice, this often leads to a time horizon $\boldsymbol{\tau}$

- ▶ Utility is focused on an interval
- ► Limited data
- "Predicted τ year survival" is often a simple way to communicate

Stop and think

- ▶ D. Altman and P. Royston, What do we mean by validating a prognostic model? (2000)
- ► E. Korn and R. Simon, Measures of explained variation for survival data (1990)

Metrics

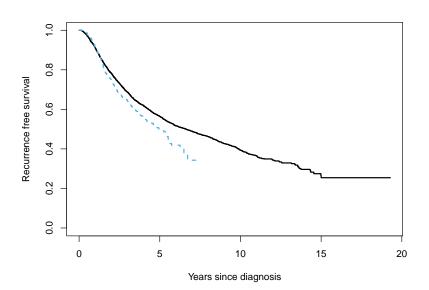
- Discrimination
 - ▶ are the predictions in the right order?
 - concordance, AUC

Metrics

- Discrimination
 - are the predictions in the right order?
 - concordance, AUC
- Calibration
 - ▶ absolute prediction: "the 5 year death rate is 27%"
 - $ightharpoonup t_i$ vs \hat{t}_i : difficult
 - absolute risk: usual
 - ightharpoonup observed vs expected events by time au
 - lacktriangle observed vs expected survival probability at au

Rotterdam and GBSG data sets

- ► Reference model: 2892 breast cancer patients from the Rotterdam tumor bank
- Validation data: 686 patients from a German Breast Cancer Study Group trial
- (One of the very few publicly available data set pairs.)



Call:

coxph(formula = Surv(ryear, rfs) ~ size + grade + pmin(node
10), data = rott2)

		coef	<pre>exp(coef)</pre>	se(coef)	Z	р
size20-50		0.3051	1.3568	0.0547	5.6	2e-08
size>50		0.5242	1.6891	0.0824	6.4	2e-10
grade		0.3223	1.3803	0.0596	5.4	6e-08
pmin(nodes,	10)	0.1317	1.1407	0.0071	18.5	<2e-16

Likelihood ratio test=563 on 4 df, p=<2e-16 n= 2982, number of events= 1713

Discrimination

- $P(y_i > y_j \mid \hat{y}_i > \hat{y}_j)$
- ► Ties: Kendall's tau-a, Kendall's tau-b, Goodman's gamma, Somers' d = opinions
- ▶ -1 to 1 versus 0 to 1: C = (d+1)/2

Discrimination

- $P(y_i > y_j \mid \hat{y}_i > \hat{y}_j)$
- Ties: Kendall's tau-a, Kendall's tau-b, Goodman's gamma, Somers' d = opinions
- ▶ -1 to 1 versus 0 to 1: C = (d+1)/2
- ▶ If y is 0/1, C = AUROC
- For survival, ignore unrankable pairs (i = 10+, j = 20). Harrell's C
- y = survival, x = 0/1: Harrell's C = Gehan-Wilcoxon

Discrimination

- $P(y_i > y_j \mid \hat{y}_i > \hat{y}_j)$
- ► Ties: Kendall's tau-a, Kendall's tau-b, Goodman's gamma, Somers' d = opinions
- ▶ -1 to 1 versus 0 to 1: C = (d+1)/2
- ▶ If y is 0/1, C = AUROC
- For survival, ignore unrankable pairs (i = 10+, j = 20). Harrell's C
- y = survival, x = 0/1: Harrell's C = Gehan-Wilcoxon
- y = survival, x = 0/1: Uno C = Peto-Wilcoxon
- Reprise of log-rank vs Gehan-Wilcoxon vs rho-gamma vs Schemper vs . . . debate
 - ▶ If all risk sets are > 20 it hardly matters
 - Uno C can get odd for small risk sets
- A storm in a teacup

Dichotomania

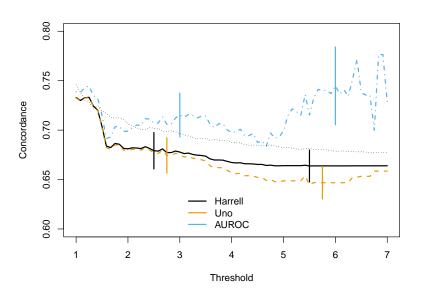
► Serious disease in clinical researchers

Dichotomania

- Serious disease in clinical researchers
- ► Time Dependent AUROC
 - ightharpoonup Dichotomize time at some point au
 - ► $P(I\{y_i > \tau\} > I\{y_j > \tau\} | \hat{y}_i > \hat{y}_j)$
 - Many papers
 - Reprise censoring weight arguments

Dichotomania

- Serious disease in clinical researchers
- ► Time Dependent AUROC
 - lacktriangle Dichotomize time at some point au
 - ► $P(I\{y_i > \tau\} > I\{y_j > \tau\} | \hat{y}_i > \hat{y}_j)$
 - Many papers
 - Reprise censoring weight arguments
- www.senns.uk/wprose.html#Dance
- (My opinion)
- $P(\min(y_i, \tau) > \min(y_j, \tau) | \hat{y}_i > \hat{y}_j)$



Calibration

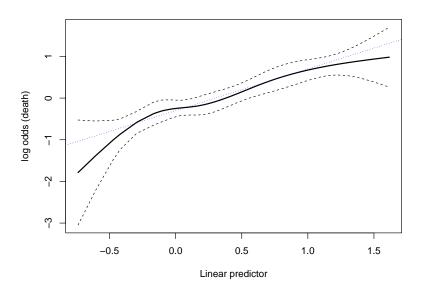
- Need \hat{p} ; this requires the baseline hazard
- ▶ How to handle censoring in the validation data
 - ightharpoonup say your target au=5 years
 - $\hat{p}_i(5)$ = predicted is available for all
 - $y_i(5) = 0/1 = \text{death}$ is not known for someone censored at 3
 - 1. Eliminate, using IPC weights
 - 2. Impute (and smooth), using a survival model
 - 3. Counting process approach (SIR)
 - 4. Pretend they aren't there

Eliminate

- ▶ Redistribute to the right: starting at the left, censored subjects give their case weight to those with more follow-up. Stop at τ .
- All the problem cases now have a weight of 0
- Use your favorite binomial tools: ROC curve, sensitivity, specificity, ... (with case weights)
- Logistic regression of new y vs spline(log(-log(phat)))
- ▶ Weighted R^2 (Brier score at τ)

Eliminate

- ▶ Redistribute to the right: starting at the left, censored subjects give their case weight to those with more follow-up. Stop at τ .
- All the problem cases now have a weight of 0
- Use your favorite binomial tools: ROC curve, sensitivity, specificity, ... (with case weights)
- Logistic regression of new y vs spline(log(-log(phat)))
- Weighted R^2 (Brier score at τ)
- old familiar metrics
- need a robust variance
- assumes censoring is independent

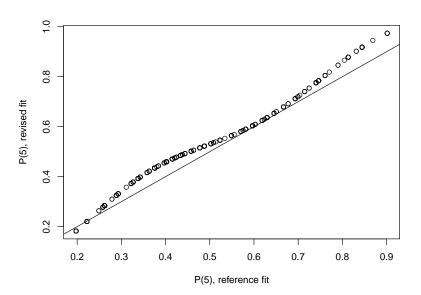


Impute and smooth

- Fit a survival model to the validation data, with $z = \log(-\log(1 \hat{p}_i))$ as the predictor;
- ► The new model should be flexible, e.g., spline(z)
- ightharpoonup Obtain a new prediction \tilde{p}_i
- ightharpoonup Compare \hat{p}_i to \tilde{p}_i

Impute and smooth

- Fit a survival model to the validation data, with $z = \log(-\log(1 \hat{p}_i))$ as the predictor;
- The new model should be flexible, e.g., spline(z)
- ▶ Obtain a new prediction \tilde{p}_i
- ightharpoonup Compare \hat{p}_i to \tilde{p}_i
- Simple to do, simple graph
- A Cox model is quick but may be too inflexible.
- (Better models are less accessible.)
- Do not label the plot as "observed vs predicted"

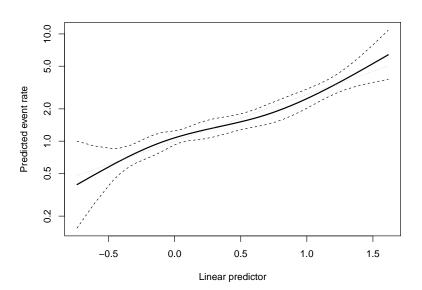


Observed vs Expected deaths

- For someone censored at 2.5 years, use $\hat{p}(2.5)$ rather than trying to impute y(2.5)
- Leads to "observed deaths in 5 yrs" vs "predicted deaths in 5"
- ► The standardized incidence ratio (SIR). Common in epidemiology; observed/expected
- ► Simple computational trick (poisson glm + offset)

Observed vs Expected deaths

- For someone censored at 2.5 years, use $\hat{p}(2.5)$ rather than trying to impute y(2.5)
- Leads to "observed deaths in 5 yrs" vs "predicted deaths in 5"
- The standardized incidence ratio (SIR). Common in epidemiology; observed/expected
- Simple computational trick (poisson glm + offset)
- Simple to do, simple graph
- Solid theory based on counting processes
- Unaffected by censoring issues
- Reliable confidence intervals and p-values
- Unfamiliar to many



Ignore censoring

- ➤ Shown to be a bad idea for ordinary survival curves in 1952 (Berkson), referred to by Kaplan and Meier (1958).
- Lives on
 - \triangleright Censored before τ : treated as alive
 - \triangleright Censored before τ : toss the observation

Summary

- ▶ It isn't hard
- Concordance, RTTR (IPCW), refit survival, and O/E are all easy
- O/E > refit > RTTR in terms of fewer assumptions, wider validity
- But all are pretty good

Summary

- ▶ It isn't hard
- Concordance, RTTR (IPCW), refit survival, and O/E are all easy
- O/E > refit > RTTR in terms of fewer assumptions, wider validity
- But all are pretty good
- ► Think