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Context

Constant biostatistical developments:
Ï to handle all the data imperfections
Ï and correctly approach statistical inference
Ï with associated software

Why not largely used in the epidemiological community?
Ï statistical solutions remain complicated
Ï usually require advanced statistical skills
Ï not enough communication:

⋆ what is the problem?
⋆ what are the solutions?
⋆ why should we care?
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Example 1: Time-varying covariates in survival analyses

repeated measures of marker (e.g., blood
biomarker, MRI features, PRO / QoL scales)
or exposure (e.g., blood pressure, BMI)
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Target "Cox" model: λi(t) =λ0(t)exp(X∗
i (t)η)
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Example 1: Gap between observations and true exposure

Exposure data = measures of an underlying process:

Ï measured with error

Ï measured at sparse and irregular times

Ï observation stopped by the event occurence -7.5
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Dedicated biostatistical model = joint models

⋆ Mixed model:
Ï underlying process of interest X∗(t) at any time t

X∗
i (t) =Wi(t)⊤β + Zi(t)

⊤bi with bi ∼N (0,B)

Ï noisy observations Xij at sparse times tij (< Ti)

Xij =X∗
i (tij)+εij with εij ∼

iid
D

⋆ Cox model:

λi(t) =λ0(t)exp(X∗
i (t)η)
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Example 2: Use of latent classes to summarize complex information
1 multi-dimensional exposures

at baseline: e.g.,
cardiometabolic health
(obesity, activity, glycemia,
blood pressure, cholesterol)

2 Estimate a latent class model
and create a classification by
assigning each subject to a
fitted class:

3 Assess the association of the
latent classes with outcomes:
e.g., cognitive trajectory,
stroke in subsequent
analyses
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Example 2: Inherent uncertainty of estimated latent class structures

  Y2Y1

class

X1 X2 XP-1 XP...

class

class

Y1X1(t) Y2X2(t) ... Y2Y2XP-1(t) Y2Y2XP(t)

Y1Y1X1(t)

Latent class model:
⋆ Latent class: ci === g with πig ===P(ci === g)

⋆ Distribution of the exposures
Xi = (Xi1, ...,XiP)⊤ in each latent class g:

Xi|ci = g∼D(µig,Vg)

⋆ Distribution of the distal outcome
Yext

i in each latent class g:

Yext
i |ci = g∼D(νig,Bg)

" with D adapted to the nature of the data
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" Assignment ̸= Truth

For k ̸= g,

P(assignment=== k |||true class=== g) ̸ ̸ ̸=== 0
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Objective

As part of the STRATOS (STRengthening Analytical Thinking for Observational Studies) Topic
Group "measurement error and misclassification":

Use simulation studies to illustrate
data challenges and benchmark pragmatic solutions

when some targetted truth is sought

" In both cases:
Ï the whole joint model is the target, not the solution of interest
Ï alert about the problem
Ï focus on easily feasible approximation techniques from the literature
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Simulation Strategy

Morris, White, Crowther (2019). Using simulation studies to evaluate statistical methods.
Stat Med https://doi.org/10.1002/sim.8086

Aim = assess the correct inference of proxy methods in a target model

Data Generation = the whole joint model with varying scenarios

Estimands = regression parameter of interest

Methods = based on literature review

Performances = Bias, Coverage Rate of 95% CI, MSE
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Example 1: time-varying covariate in survival model

Data Generation: joint model = linear mixed model for the exposure + Cox model for the event

Mixed model:

X∗
i (t) =F(t)(β+ui) ∀t ∈R+

with F(t) linear, quadratic

Noisy observations:

Xij =X∗
i (tij)+σεij

with εij ∼N (0,1) and σ= 1,3

Visits j every y=1,2 up to 10{
tij = j+τij
max(tij) < Ti
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Y1 tijXij
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λi(t) =λ0(t)exp(X∗
i (t)η)

with 2 asso. η = 0.2, 0.4

with 3 Weibull λ0(t)

Estimands = η
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Example 1: time-varying covariate in survival model

Methods= Approximation methods from the literature for:

λi(t) =λ0(t)exp(X∗
i (t)η)

Ï Last Observation Carried Forward (LOCF)
⋆ use the last observation Xij until a new one is available

Ï Regression Calibration
⋆ estimate a mixed model on available X
⋆ compute the expected value X̂∗

i (t)
⋆ include X̂∗

i (t) in the survival model

" 2 cases: truncation of Y at the event (RC) or access to posterior data (Post-Event
RC / PE-RC)

Ï Multiple Imputation (MI) (Moreno-Betancur, 2018)
⋆ estimate a mixed model on available X using information on T
⋆ draw values X∗(b)

i (t)
⋆ include X∗(b)

i (t) in the survival model
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Example 1: some results (on 500 replicates)
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Example 2: estimated latent class structure in subsequent analysis
Data Generation = Simultaneous generation of the total information

2 classes
(50% / 50%)

3 separation levels in
the trajectories
(entropy=65%, 75%,
85%)

  

latent 
classes

time-varying
exposure

2 sample sizes
(N=200, 1000)

3 distances between classes:

Yext
i =β11ci=1 +β21ci=2 +σϵi

β2 −β1 = 0.5, 2 or 5

Estimands = β2, β1, σ
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Example 2: estimated latent class structure in subsequent analysis
Methods = Approximation methods from the literature for:

Yext
i |ci =β11ci=1 +β21ci=2 +σϵi

Ï The Naive modal method:
Assignment ĉ as covariate as if there was a perfect classification

Ï The Naive proportional method:
Assignment ĉ as covariate weighted by the class-membership posterior probability P(c= g|Xi)

Ï The Weighting correction method (Bolck 2004, Bakk 2013):
Assignment ĉ as covariate weighted by the probability of misclassification P(ĉ= k|c= g)

Ï The conditional regression on the true classes (Vermunt 2010, Bakk 2013):
Regression rewritten as a latent class model according to our target classes

Ï The two-stage method (Xue et Bandeen-Roche 2002, Bakk et Kuha 2018, Proust-Lima 2023):
Estimate the parameters of the regression for Yext using the whole joint likelihood L (X,Yext) with
parameters from X model fixed
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Assignment ĉ as covariate weighted by the class-membership posterior probability P(c= g|Xi)

Ï The Weighting correction method (Bolck 2004, Bakk 2013):
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Example 2: some results of performances - N=200 (on 500 replicates)

3 parameters to examine: mean in each class + variance of the error
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Example 2: some results of performances - N=200 (on 500 replicates)
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Example 2: some results of performances - N=1000 (on 500 replicates)

3 parameters to examine: mean in each class + variance of the error
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Concluding remarks
Essential step for strengthening the statistical analysis in epidemiological studies

Great potential but such a difficult exercise!

Most critical challenges
Ï convince without being too technical
Ï impossible to reach exhaustivity
Ï lack of (user-friendly) implementations
Ï sometimes/often, only sophisticated techniques work

Simulations or Applications?
Ï Complementary roles
Ï Simulations are the perfect setting to raise awareness
Ï Applications remain much more tangible - necessary to convince the reluctants ("OK, but should I

really care?")
Ï But too many other things happen - e.g., misspecification
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