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Context

@ Constant biostatistical developments:
> to handle all the data imperfections
> and correctly approach statistical inference
» with associated software

@ Why not largely used in the epidemiological community?

» statistical solutions remain complicated

» usually require advanced statistical skills
> not enough communication:

* what is the problem?

* what are the solutions?
* why should we care?
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Example 1: Time-varying covariates in survival analyses

@ repeated measures of marker (e.g., blood @ time to health outcome (e.g., death, diagnosis,
biomarker, MRI features, PRO / QoL scales) progression, dropout)
or exposure (e.g., blood pressure, BMI)
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Target "Cox" model: A;(r) = Ao (1) exp(X[ (1)n)
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Example 1: Gap between observations and true exposure

@ Exposure data = measures of an underlying process:

» measured with error

» measured at sparse and irregular times

> observation stopped by the event occurence
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Example 1: Gap between observations and true exposure

@ Exposure data = measures of an underlying process: 50 :

» measured with error

Outcome
+

» measured at sparse and irregular times

> observation stopped by the event occurence o

5
Time in the study

@ Dedicated biostatistical model = joint models

* Mixed model: * Cox model:
> underlying process of interest X*(#) at any time ¢
- T Ty Ai() = Ao (1) exp(X; (1))
X' O=W;@®)' B+ Z;®'b; with b;~AN(0,B)
» noisy observations X;; at sparse times #; (< T;)

Xij =Xi* (i) + € with Ejj :“1@
ii
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Example 2: Use of latent classes to summarize complex information

@ multi-dimensional exposures = = =20 2D R
at baseline: e.g.,

cardiometabolic health 5 i m m M %

(obesity, activity, glycemia, |
blood pressure ChO|eSterO|) ('J 160 2(’)0 3606 I(’)O 200 3000 100 200 3000 100 200 3000 100 200 3000 \00 200 300
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Example 2: Use of latent classes to summarize complex information

@ multi-dimensional exposures Ez0 Z70 Za0 T

at baseline: e.g., ]

cardiometabolic health
(IJ IIDO 260 3000 100 200 3000 100 200 3000 100 200 3000 100 200 3000 100 200 300
D

Exposure
3

(obesity, activity, glycemia,
blood pressure, cholesterol)

Expo A Expo C Expo D Expo F
© Estimate a latent class model o
and_ create a classn‘_lcatlon by g w % o w M
assigning each subject to a
fitted class: 0 100 200 3000 100 200 3000 100 200 3000 100 200 3000 100 200 3000 100 200 300

Ordered ID by class
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Example 2: Use of latent classes to summarize complex information

@ multi-dimensional exposures =0 =50 = =57

at baseline: e.g., - & Xy
cardiometabolic health g @‘ m m M
(obesity, activity, glycemia, AN
0 100 200 3000 100 200 3000 100 200 3000 100 200 3000 100 200 3000 100 200 300
blood pressure, cholesterol) D
Expo A Expo C Expo D Expo F
@ Estimate a latent class model .
and_ create a classn‘_lcatlon by g w % S w w
assigning each subject to a
f|tted CIaSS: 0 100 200 3000 100 200 3000 WOOOfggre(‘ijO:)DOby;g)ssmo 3000 100 200 3000 100 200 300
75- >'\00%- at
. . ) = strata
© Assess the association of the £ «- 8 o B
latent classes with outcomes: 2= S N
e.g., cognitive trajectory, : . 5 o
stroke in Subsequent 00 25 50 75 100 00 25 50 75 100
follow-up time follow-up time

analyses
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Example 2: Inherent uncertainty of estimated latent class structures

N

X1

X2

Xp1

Xp

@ Latent class model:

* Latent class:

* Distribution of the exposures
X; = (X;1,...X;p)" in each latent class g:

A\ with 2 adapted to the nature of the data
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Example 2: Inherent uncertainty of estimated latent class structures

.

X1

X2

Xp1

Xp

@ Latent class model:
* Latent class:

* Distribution of the exposures
X; = (X;1,...X;p)" in each latent class g:

* Distribution of the distal outcome

ci=g with 7, =P(c;=g)

Xilci=g~D(uig, V)

y®in each latent class g:

A with 2 adapted to the nature of the data
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Example 2: Inherent uncertainty of estimated latent class structures

Assignment 1
@ Assign. Yext
10- l I I
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Exposure

@ Latent class model:
* Latentclass: ¢;=g with z;, =P(c;=g)

* Distribution of the exposures
X; = (X;1,...X;p)" in each latent class g: - :
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Xilei =8 ~PD(ig, V) ABCOLF ABLOEF ABOOEF ABCOLF
A Assignment # Truth
Fork#g,
P(assignment =k |true class=g) #0
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Objective

As part of the STRATOS (STRengthening Analytical Thinking for Observational Studies) Topic
Group "measurement error and misclassification™:

Use simulation studies to illustrate

data challenges and benchmark pragmatic solutions
when some targetted truth is sought

/A In both cases:

> the whole joint model is the target, not the solution of interest
> alert about the problem
» focus on easily feasible approximation techniques from the literature
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Simulation Strategy

Morris, White, Crowther (2019). Using simulation studies to evaluate statistical methods.
Stat Med https://doi.org/10.1002/sim.8086

Aim = assess the correct inference of proxy methods in a target model
Data Generation = the whole joint model with varying scenarios
Estimands = regression parameter of interest

Methods = based on literature review

Performances = Bias, Coverage Rate of 95% CI, MSE
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Example 1: time-varying covariate in survival model
Data Generation: joint model = linear mixed model for the exposure + Cox model for the event

Mixed model: N=500 subjects

X () =F0)(B+u;) VieR"

with F () linear, quadratic

Noisy observations:

X,’j =X[-* (tij) +o€jj

with &;; ~4'(0,1) and 0= 1,3

Visits j every y=1,2upto 10 &1

tij =j+Tjj o
rnax(tij) <T; 5+ i § 3
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Example 1: time-varying covariate in survival model

Data Generation: joint model = linear mixed model for the exposure + Cox model for the event

Mixed model:
X' =F0)(f+uy) VieR"
with F(z) linear, quadratic
Noisy observations:
Xij =X/ (1) + ogjj
with gjj~N0,1) and o= 1,3

Visits j every y=1,2 upto 10

tij =j+Tjj
max(f;) <T;
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Proportional Hazard Model
Ai(®) = Ao (D) exp(X; (m)
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with 3 Weibull 1 (1)
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Example 1: time-varying covariate in survival model

Data Generation: joint model = linear mixed model for the exposure + Cox model for the event

Mixed model:
X' (=F0)(p+uy) VieR"
with F(z) linear, quadratic
Noisy observations:
Xij =X/ (1) + ogjj
with &;; ~4'(0,1) and 0= 1,3

Visits j every y=1,2 up to 10

tij =j+Tjj
l’IlaX(tij) <T;
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Example 1: time-varying covariate in survival model
Data Generation: joint model = linear mixed model for the exposure + Cox model for the event

Mixed model: N=500 subjects

* _ . +
X; O =F®(f+u;) VieR \ Proportional Hazard Model

with F(z) linear, quadratic

Ai(1) = Ao (1) exp(X; (1))

Noisy observations: t; T:,0i

L with 2 asso. n=0.2, 0.4

%
X,'jZX[- (l,'j)+06ij . .

with 3 Weibull 1 (1)

with &;; ~4'(0,1) and 0= 1,3

)

Visits j every y=1,2 up to 10_ N / N

Li=j+Tj 2 Estimands = 5
max(t;j) < T; [ S R S

survival

0.00
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Example 1: time-varying covariate in survival model
Methods= Approximation methods from the literature for: i

Ai(1) = Ao (1) exp (X} (1))

» Last Observation Carried Forward (LOCF)
* use the last observation X;; until a new one is available
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Example 1: time-varying covariate in survival model
Methods= Approximation methods from the literature for:
Ai(#) = Ao (1) exp (X (1)

» Last Observation Carried Forward (LOCF)

* use the last observation X;; until a new one is available ;
» Regression Calibration S

* estimate a mixed model on available X T : -
* compute the expected value Xl.* 0] ;

* include X7 (1) in the survival model ; g
0 /
A\ 2 cases: truncation of Y at the event (RC) or access to posterior data (Post-Event ==
RC / PE-RC)
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Example 1: time-varying covariate in survival model
Methods= Approximation methods from the literature for:
Ai(#) = Ao (1) exp (X (1)

» Last Observation Carried Forward (LOCF)
* use the last observation X;; until a new one is available

» Regression Calibration

* estimate a mixed model on available X
* compute the expected value Xl.* 0]

* include X7 (1) in the survival model

A\ 2 cases: truncation of Y at the event (RC) or access to posterior data (Post-Event

RC / PE-RC)

> Multiple Imputation (MI) (Moreno-Betancur, 2018)
* estimate a mixed model on available X using information on T
* draw values X, (1)

* include Xi*(b] () in the survival model
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Example 1: some results (on 500 replicates)

Weak association

Scenario 1: low error, high survival

Scenario 4: high error, high survival

ey

[MsE=0.98 099 095 104 104
CR=96.29%  934%  950%  950%  94.2%

8 cr-2.01%

‘¢‘

221 1.03 179 158
67.67% 93.78%  93.78%  94.16%

Scenario 3: low error, low survival

Scenario 6: high error, low survival

MSE=2.23 129 090 151 127
CR=56.0%  89.4%  93.6%  938%  93.76%

g-Mse=20.19

CR= 0.0%

b

433 1.06 6.42 468
67.11% 92.62% 88.37%  92.1%
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Example 1: some results (on 500 replicates)

Weak association Strong association
Scenario 1: low error, high survival Scenario 4: high error, high survival Scenario 7: low error, high survival Scenario 10: high error, high survival
© |wse=0.08 0.99 0.95 104 104 vse=5.71 221 103 179 158 Iwse=3.96 205 104 162 145 vses050 1477 3.08 512 450
§* CR=96.2% 93.4% 95.0% 95.0% 94.2% §* CR=2.01% 67.67% 93.78%  93.78%  94.16% 3 cR=23.6% 65.4% 94.6% 92.2% 95.4% S CR= 0.0% 0.83% 44.61%  89.42%  93.97%
Scenario 3: low error, low survival Scenario 6: high error, low survival Scenario 9: low error, low survival Scenario 12: high error, low survival
3 Locr 3 1 Locr =1
rC rC
a| — rerc =]
o | ] 1 —m o
3 .
S-|MsE=2.23 129 0.90 151 127 2 0.19 433 1.06 6.42 4.68 2-{MSE=20.72 6.87 163 6.02 384 2 MSE;D&l 51 31.54 345 46.37 36.23
CR=56.0% 89.4% 93.6% 93.8% 93.76% CR= 0.0% 67.11%  92.62%  88.37% 92.1% CR=0.2% 42.4% 93.6% 88.2% 96.2% CR=0.0% 19.71% 73.4% 85.27%  87.08%
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Example 2: estimated latent class structure in subsequent analysis

Data Generation = Simultaneous generation of the total information
2 classes 2 sample sizes
(50% / 50%) dasses (N=200, 1000)

time-varying ||
exposure

3 separation levels in
the trajectories
(entropy=65%, 75%,
85%)
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Example 2: estimated latent class structure in subsequent analysis

Data Generation = Simultaneous generation of the total information
2 classes 2 sample sizes
(50% / 50%) dasses (N=200, 1000)

time-varying ||
exposure

3 separation levels in
the trajectories
(entropy=65%, 75%,
85%)
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Example 2: estimated latent class structure in subsequent analysis

Data Generation = Simultaneous generation of the total information
2 classes 2 sample sizes
(50% / 50%) dasses (N=200, 1000)

time-varying ||
exposure

3 separation levels in
the trajectories
(entropy=65%, 75%,
85%)
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Example 2: estimated latent class structure in subsequent analysis

Data Generation = Simultaneous generation of the total information

2 classes 2 sample sizes
(50% /50%) (N=200, 1000)
time-varying ||
exposure outcome
3 separation levels in e = : 3 distances between classes:

the trajectories = | Y?X‘ =Bile=1 + B2le,=2 + 0€;
(entropy=65%, 75%,

85%) Br—p1=0520r5

Tirne: Extemal outcame
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Example 2: estimated latent class structure in subsequent analysis

Data Generation = Simultaneous generation of the total information

2 classes 2 sample sizes
(50% /50%) (N=200, 1000)
time-varying ||
exposure outcome
3 separation levels in e = 3 distances between classes:

the trajectories
(entropy=65%, 75%,
85%)

——— Y?Xt:ﬁlﬂci=1+ﬁ2ﬂci=2+aei

Br—B;=0520r5

Tirne: Extemal outcame
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Example 2: estimated latent class structure in subsequent analysis

Data Generation = Simultaneous generation of the total information

2 classes 2 sample sizes
(50% /50%) (N=200, 1000)
time-varying ||
exposure outcome
3 separation levels in e = 3 distances between classes:

the trajectories
(entropy=65%, 75%,
85%)

——— Y?Xt:ﬁlﬂci=1+ﬁ2ﬂci=2+aei

Br—B;=0520r5

Tirne: Extemal outcame

Estimands = 6;, B1, 0
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Example 2: estimated latent class structure in subsequent analysis
Methods = Approximation methods from the literature for:
Yo = Bile=1 + Bole,—2 + 0€;

» The Naive modal method:
Assignment ¢ as covariate as if there was a perfect classification
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Example 2: estimated latent class structure in subsequent analysis
Methods = Approximation methods from the literature for:
Yo = Bile=1 + Bole,—2 + 0€;

» The Naive modal method:
Assignment ¢ as covariate as if there was a perfect classification

» The Naive proportional method:
Assignment ¢ as covariate weighted by the class-membership posterior probability P(c = g|X;)

» The Weighting correction method (Bolck 2004, Bakk 2013):
Assignment ¢ as covariate weighted by the probability of misclassification P(¢ = klc = g)
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Example 2: estimated latent class structure in subsequent analysis
Methods = Approximation methods from the literature for:

ext
Y77 = Bile=1+ B2le=2 + 0€;

» The Naive modal method:
Assignment ¢ as covariate as if there was a perfect classification

» The Naive proportional method:
Assignment ¢ as covariate weighted by the class-membership posterior probability P(c = g|X;)

» The Weighting correction method (Bolck 2004, Bakk 2013):
Assignment ¢ as covariate weighted by the probability of misclassification P(¢ = klc = g)

> The conditional regression on the true classes (Vermunt 2010, Bakk 2013):
Regression rewritten as a latent class model according to our target classes

» The two-stage method (Xue et Bandeen-Roche 2002, Bakk et Kuha 2018, Proust-Lima 2023):
Estimate the parameters of the regression for Y8t using the whole joint likelihood £ (X, YeXt) with
parameters from X model fixed
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Example 2: some results of performances - N=200 (on 500 repiicates)
@ 3 parameters to examine: mean in each class + variance of the error
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Example 2: some results of performances - N=200 (on 500 repiicates)
@ 3 parameters to examine: mean in each class + variance of the error

Diff = 0.5 Diff =2 Diff=5
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Example 2: some results of performances - N=1000 (on 500 repiicates)
@ 3 parameters to examine: mean in each class + variance of the error

Diff = 0.5 Diff =2 Diff=5
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Concluding remarks

Essential step for strengthening the statistical analysis in epidemiological studies

Great potential but such a difficult exercise!

@ Most critical challenges
> convince without being too technical
» impossible to reach exhaustivity
> lack of (user-friendly) implementations
» sometimes/often, only sophisticated techniques work

@ Simulations or Applications?
» Complementary roles
» Simulations are the perfect setting to raise awareness

» Applications remain much more tangible - necessary to convince the reluctants ("OK, but should |
really care?")
> But too many other things happen - e.g., misspecification
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