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Numerous measures have been proposed to illustrate the performance of predictive artificial intelligence (AI)
models. Selecting appropriate performance measures is essential for predictive Al models intended for use in
medical practice. Poorly performing models are misleading and may lead to wrong clinical decisions that can be
detrimental to patients and increase financial costs. In this Viewpoint, we assess the merits of classic and con-
temporary performance measures when validating predictive AI models for medical practice, focusing on models
that estimate probabilities for a binary outcome. We discuss 32 performance measures covering five performance
domains (discrimination, calibration, overall performance, classification, and clinical utility) along with corre-
sponding graphical assessments. The first four domains address statistical performance, whereas the fifth domain
covers decision-analytical performance. We discuss two key characteristics when selecting a performance measure
and explain why these characteristics are important: (1) whether the measure’s expected value is optimised when
calculated using the correct probabilities (ie, whether it is a proper measure) and (2) whether the measure solely
reflects statistical performance or decision—analytical performance by properly accounting for misclassification costs.
17 measures showed both characteristics, 14 showed one, and one (F1 score) showed neither. All classification
measures were improper for clinically relevant decision thresholds other than when the threshold was 0-5 or equal to
the true prevalence. We illustrate these measures and characteristics using the ADNEX model which predicts the
probability of malignancy in women with an ovarian tumour. We recommend the following measures and plots as
essential to report: area under the receiver operating characteristic curve, calibration plot, a clinical utility measure
such as net benefit with decision curve analysis, and a plot showing probability distributions by outcome category.

Introduction

The medical literature abounds with predictive artificial
intelligence (AI) models that estimate the probability of
individuals having (diagnostic) or developing (prognostic) a
disease or health state of interest (the event), also known as
clinical prediction models."? Although these models were
traditionally developed using statistical methods such as
regression analysis, the use of machine learning algorithms
with improved flexibility is increasing. For instance, a
traditional logistic regression model might aim to predict
the risk of permanent stoma in patients undergoing
resection of left-sided obstructive colon cancer using
demographic, clinical, and laboratory measurements.?
A more contemporary model built using deep learning
might aim to predict the presence of atrial fibrillation based
on sinus rhythm electrocardiograms.*

Regardless of the modelling approach, the performance
of predictive AI models intended for medical practice
should be properly evaluated. Consequently, selecting
appropriate performance measures for predictive Al in
health care is essential, since poorly performing models
might lead to wrong clinical decisions that can be detri-
mental to patients and increase financial costs.® Although
numerous such measures have been suggested, clarity is
needed. There is occasional conflict regarding the meas-
ures that are recommended in the medical, statistical, and
machine learning literature.*"!
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Performance assessment is especially relevant for both
external and internal validation studies. An external valid-
ation study evaluates model performance using a dataset
that includes individual participant data from a target
population in which the model might be used.’>"* Unlike
the training dataset, the external validation dataset includes
data from individuals from different locations, time peri-
ods, or settings. In contrast, internal validation evaluates
model performance using new individuals from the same
population as the training dataset using methods such as
cross-validation, bootstrapping, or (repeated) train-test
splitting.’>** Thus, internal validation refers not to model
selection but to an independent evaluation of the selected
model.

In this Viewpoint, we assess classic and contemporary
performance measures for model evaluation from the
statistical and machine learning literature and provide
recommendations for researchers, end users (ie, health
care staff), and other stakeholders such as policy makers.
We present a taxonomy of performance domains, describe
key characteristics for performance measures, discuss
these measures in combination with an illustrative case
study, and formulate recommendations.

A taxonomy of five performance domains
We classify performance measures into five domains:
discrimination,  calibration, overall  performance,
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classification, and clinical utility. Among these domains,
the first three evaluate performance based on probability
estimates (Appendix p 2).

Discrimination focuses on the extent to which the model
assigns higher probabilities of the event for individuals with
the event than for those without. Discrimination reflects
relative performance; ie, it does not matter how high or low
the estimated probabilities are, only whether they allow to
discriminate between individuals with versus without the
event.

Calibration focuses on the extent to which the probability
estimates correspond to observed event proportions. Cali-
bration reflects absolute performance by evaluating whether
estimates are too high or too low. Models can therefore have
good discrimination but poor calibration, and vice versa.

Overall performance of a model combines discrimination
and calibration by quantifying how closely the probability
estimates approach the actual outcomes of 0 (no event) or
1 (event).”'¢"

The fourth and fifth performance domains require a
threshold on the estimated risk of the event to classify
individuals into two mutually exclusive groups: low-risk
(estimated risk below the threshold) and high-risk (esti-
mated risk equal to or above the threshold) groups. These
groups are linked to a decision about an intervention
(eg, surgery), which would be suggested for individuals at
high risk but not for those at low risk. The threshold can
therefore be referred to as the decision threshold.
Although multiple decision thresholds can be used to
separate individuals into three or more groups, we focus
on the common single-threshold case.

The fourth performance domain, classification, focuses
on the extent to which individuals are correctly classified as
high or low risk. This domain is based on the contingency
table or confusion matrix, a cross-tabulation of classi-
fications (low vshigh risk) and outcomes (event vsno event).
Classification performance is perfect when all individuals
with an event have a probability above the decision
threshold and all individuals without an event have a
probability below the threshold. Classification performance
isinfluenced by discrimination and calibration performance.

The fifth domain, clinical utility, goes one step further by
explicitly incorporating misclassification costs when
evaluating classifications of individuals into low-risk and
high-risk groups. Misclassification costs is an established
term that refers broadly to the harms of misclassification of
any kind, where misclassifications refer to false positives
and false negatives.”™ In biomedical applications, the
consequences of a false negative (for instance, not referring
a woman with ovarian malignancy for advanced surgery)
are almost always different from the consequences of a false
positive (referring a woman with a benign tumour for
advanced surgery). Clinical utility evaluates the quality of
decisions based on the decision threshold, and whether
using a model leads to better decisions than not using it or
than a competing model. The decision threshold should
therefore be clinically relevant and linked with

misclassification costs (panel). Due to its focus on the
quality of decisions, clinical utility is the most important
performance domain.

We discuss 32 (three discrimination, six calibration, nine
overall, 11 classification, and three clinical utility) per-
formance measures (table 1), along with corresponding
visual assessments.

Key characteristics of an informative
performance measure

We define two key characteristics that a performance
measure should meet: (1) the measure should be proper,
and (2) it should have a clear focus on solely reflecting
statistical or decision—analytical value by properly consid-
ering differential misclassification costs. Measures that do
not possess the first characteristic cannot be trusted,
whereas measures not possessing the second are equivocal.
A third desirable characteristic is intuitive interpret-
ation.** We do not discuss this characteristic further, as
interpretability is subjective and influenced by background
knowledge and familiarity.

Properness

A performance measure is called proper if its expected
value is optimal when using the correct model, which is the
model that gives the correct probabilities based on the
predictors or features in the model.?**° Here, expected value
refers to the average value obtained after repeating the
validation study multiple times. In any given dataset, par-
ticularly when sample size is low, the correct model can be
outperformed by an incorrect model due to random vari-
ation. The importance of properness is that a proper
measure cannot be fooled: in expectation, the correct model
cannot be outperformed by an incorrect one. A measure is
strictly proper when its expected value is optimal only for
the correct model. When the expected value is optimal for
the correct model and for some incorrect models, a meas-
ure is called semi-proper. When an incorrect model can
have a better expected value than the correct model, the
measure is termed improper and cannot be trusted. The
properness status for the 32 measures is listed in table 1,
and an illustration is provided in the Appendix (pp 3-6).

Clear focus on statistical or decision-analytical evaluation
There is a clear distinction between statistical and deci-
sion—analytical performance evaluation of predictive Al
models for medical practice. The first four performance
domains (appendix p 2) focus on different aspects of stat-
istical performance, whereas the clinical utility domain
focuses on decision—analytical performance. Statistical
performance measures are essential for model evaluation
but cannot be used to find out whether a model should be
used in practice: it is not appropriate to cite, for example,
good discrimination and calibration or conclude that a
model can be used to aid decisions about ovarian surgery. If
a performance measure aims to go beyond measuring
statistical value, it should incorporate misclassification
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Panel: Defining a decision threshold

The primary aim of most predictive Al models in medical practice is to support subsequent decision making. Probability estimates may
guide health professionals and patients to improve health outcomes by avoiding a burdensome intervention with limited expected
benefit for those at low risk and facilitating intervention selection for those at high risk. Consequently, the decision threshold should be
defined on medical rather than statistical grounds.”

Often, however, a threshold is chosen by optimising a statistical measure such as the Youden index (sensitivity + specificity - 1). When
maximising the Youden index, sensitivity and specificity are considered equally important; this is rarely the case in medicine. Using
statistical arguments to set a decision threshold is inconsistent with decision theory and detached from practical use by clinicians.

Instead, once the decision that the model intends to support is clearly defined, the four possible consequences of using the model to
support that decision should be considered:

True positives (individuals with the event and classified as high risk)

e True negatives (individuals without the event and classified as low risk)

e False negatives (individuals with the event and classified as low risk)

e False positives (individuals without the event and classified as high risk)*#2-%

The weight of these consequences might vary by the nature and effects of the intervention, the health-care system, or by clinician and
patient.

The case study in this Viewpoint was when patients required surgical removal of an ovarian mass. The assessment of different neoplasias
in the adnexa (ADNEX) model was used to decide whether advanced or conservative surgery was needed. A decision threshold of 0-1
(10%) for the probability of malignancy is often recommended.?> Suggesting advanced surgery to patients who actually have a 10% risk of
malignancy based on the ADNEX predictors implies performing advanced surgery in ten individuals per true positive (ie, performing

advanced surgery in a patient with a malignant tumour).*® In other words, we accept up to nine false positives (ie, performing advanced
surgery in up to nine patients with benign tumour) per true positive. Hence, using this threshold assumes that the medical benefit of
advanced surgery on a malignant tumour is nine times greater than the harm of unnecessary advanced surgery in individuals with a

benign tumour.® In the section on Clinical utility, we describe how measures for clinical utility incorporate misclassification costs.

costs in accordance with decision—-analytical principles
(panel). If misclassification costs influence a performance
measure in an implicit or ad hoc way, the measure neither
assesses statistical performance nor adequately evaluates
the quality of decisions for clinical practice.

Case study: external validation of a diagnostic model for
ovarian cancer

As a case study, we consider prediction of malignancy in
women with an ovarian tumour. The ADNEX model,
developed by the International Ovarian Tumor Analysis
(IOTA) consortium (authors BVC and DT are part of this
consortium), preoperatively estimates the probability of
malignancy in women with an ovarian tumour who are
scheduled for surgery.' The model can inform decisions
regarding the type of surgery (advanced vs conservative) for
patients examined at an oncology centre or regarding
referral to an oncology centre for patients examined else-
where.> ADNEX was developed on the data from
5909 individuals recruited between 1999 and 2012 in
24 secondary and tertiary care centres from 10 countries
(Italy, Belgium, Sweden, Czech Republic, Poland, France,
United Kingdom, China, Spain, and Canada). The Tran-
sIOTA study externally validated ADNEX for its ability to
distinguish benign from malignant tumours, using data
from 894 women recruited between 2015 and 2019 in
one secondary and five tertiary care centres in
four countries (Belgium, Italy, Czech Republic, and United
Kingdom). There were 434 women with a malignant
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tumour (prevalence 49%).2 The retrospective use of data
from the IOTA consortium was approved by the Research
Ethics Committee from the University Hospitals Leuven,
IOTA’s leading ethics committee (S64709).

For didactic purposes, we use this dataset to calculate all
discussed performance measures with 95% confidence
intervals (95% CI) and show all discussed visualisations.
Confidence intervals were obtained using the percentile
bootstrap method on 1000 bootstrap samples. We eval-
uated the performance of ADNEX as is and after updating
using logistic recalibration (table 1). To update ADNEX,
we fitted a logistic regression model of the outcome on the
logit of the estimated event probability (the linear pre-
dictor).>** This method is similar to Platt scaling, a well
known method in machine learning to improve the cali-
bration of predictions.** Logistic recalibration essen-
tially applies a linear transformation to the linear
predictor. This method is thus a rank-preserving method,
and the ranking of patients based on the estimated
probability of malignancy remains the same before and
after updating.

All R and Python scripts, as well as the estimated risk of
malignancy and outcomes for the 894 participants, are
available in the GitHub repository.

Performance measures

We discuss the selected measures briefly in this section.
A detailed description of the measures, including formulas,
are presented in the Appendix (pp 7-23).

For more on the R and Python
scripts, see https://github.com/
benvancalster/
PerfMeasuresOverview
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Characteristics

ADNEX results

Properness* Focust Before recalibration After recalibration
Discrimination
AUROC, AUC, or C-statistic + + 0-911 (0-894 to 0-927) 0-911 (0-894 to 0-927)
AUPRC or AP + - 0-895 (0-862 to 0-921) 0-895 (0-862 to 0-921)
PAUROC (sensitivity >0-8) + - 0-141 (0-130 to 0-151) 0-141 (0-130 to 0-151)
Calibration
O:E ratio + + 1-228 (1-171 to 1-288) 1-000 (0-955 to 1-046)
Calibration intercept + + 0-810 (0-619 to 1-006) 0-000 (-0-180 to 0-184)
Calibration slope + + 0-934 (0-833 to 1-051) 1-000 (0-892 to 1-126)
ECI + + 0-105 (0-063 to 0-160) 0-002 (0-001 to 0-017)
ICl + + 0-094 (0-074 to 0-118) 0-014 (0-009 to 0-038)
ECE + + 0-091 (0-072 to 0-117) 0-017 (0-019 to 0-050)
Overall performance
Loglikelihood ++ + -370 (-407 to -334) -337 (-368 to -307)
Logloss or cross entropy ++ + 370 (334 to 407) 377 (307 to 368)
Brier score ++ + 0-133 (0-118 to 0-147) 0-118 (0-106 to 0-131)
Scaled Brier, Brier skill score, or IPA ++F + 0-469 (0-412 to 0-527) 0-526 (0-475 to 0-576)
McFadden R? ++} + 0-403 (0-343 to 0-461) 0-456 (0-405 to 0-504)
Cox-Snell R? ++} + 0-427 (0-379 to 0-471) 0-469 (0-429 to 0-502)
Nagelkerke R ++f + 0-570 (0-505 to 0-629) 0-625 (0-573 to 0-670)
Coefficient of discrimination or discrimination slope - + 0-509 (0-478 to 0-540) 0-525 (0-495 to 0-556)
Mean absolute prediction error - + 0-243 (0-226 to 0-260) 0-237 (0-222 to 0-252)
Classification: summary measures (using t=0-1)
Classification accuracy at t - + 0-794 (0-768 to 0-819) 0-691 (0-661 to 0-723)
Balanced accuracy at t all + 0-799 (0-776 to 0-822) 0-700 (0-677 to 0-724)
Youden index at t -q + 0-597 (0-551 to 0-643) 0-399 (0-353 to 0-448)
Diagnostic odds ratio at t - + 37-400 (24-600 to 68-500) 43-300 (23-600 to 119-000)
Kappa at t - + 0-592 (0-544 to 0-639) 0-392 (0-346 to 0-442)
Flatt -« - 0-818 (0-792 to 0-843) 0-756 (0-727 to 0-782)
MCC at t - + 0-625 (0-581 to 0-667) 0-480 (0-438 to 0-522)
Classification: partial measures (using t=0-1)
Sensitivity or recall - + 0-954 (0-934 to 0-974) 0-984 (0-972 to 0-993)
Specificity - + 0-643 (0-603 to 0-686) 0-415 (0-370 to 0-463)
Positive predictive value or precision - + 0-716 (0-679 to 0-753) 0-614 (0-577 to 0-650)
Negative predictive value - + 0-937 (0-911 to 0-964) 0-965 (0-938 to 0-986)
Clinical utility|| (net benefit: t=0-1; expected cost: costs 9:1)
Net benefit + + 0-443 (0-411 to 0-475) 0-444 (0-411 to 0-478)
Standardised net benefit + + 0-912 (0-892 to 0-932) 0-915 (0-900 to 0-930)
Expected cost + + 0-355 (0-274 to 0-376)** 0-355 (0-274 to 0-376)**

*Properness: ++, strictly proper; +, semi-proper; -, improper. tFocus: +, measure focuses either on purely statistical or decision-analytical evaluation by properly addressing
misclassification costs; -, measure mixes statistical and decision-analytical performance evaluation, and therefore, lacks a clear focus. These measures are asymptotically strictly
proper. §Semi-proper when t=0-5, which is rarely the clinically relevant threshold. 1Semi-proper when t equals the true prevalence, which is rarely the clinically relevant threshold.
||For clinical utility in particular, the use of confidence intervals and p values for measures of clinical utility contradicts the principles of decision analysis. **Expected cost was
minimised at a decision threshold of 0-06 for the original model and 0-15 for the recalibrated model. AP=average precision. AUC or AUROC=area under the receiver operating
characteristic curve. AUPRC=area under the precision-recall curve. ECE=expected calibration error. ECl=estimated calibration index. ICl=integrated calibration index. IPA=index of
prediction accuracy. MCC=Matthew's correlation coefficient. O:E ratio=observed over expected ratio. pAUROC=partial AUROC.

recalibration

Table 1: Summary of performance measures discussed, assessment of two key characteristics, and results of ADNEX model in the case study before and after

Discrimination

The definition of discrimination implies that discrimin-
ation measures should rely only on the ranks of the esti-
mated probabilities in the dataset.*® The key measure is the
concordance probability or C-statistic. For binary outcomes,
the C-statistic is equal to area under the receiver operating
characteristic curve (AUROC).?”® Several researchers have
advised against using AUROC when prevalence is far from

0-5 (class imbalance). AUROC has been described as mis-
leading or overoptimistic when the event is rare because it
ignores the difficulty of obtaining both acceptable positive
predictive value (PPV or precision) and sensitivity (or recall)
or does not consider misclassification costs.** The pre-
cision—recall (PR) curve and the area underneath (AUPRC)
are often recommended as alternatives to the ROC curve
and AUROC.### Another measure suggested instead of
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AUROC is the partial AUROC (pAUROC), which focuses
on the part of the ROC curve where specificity or sensitivity
reach a specific minimum tolerable level.#*# AUROC,
AUPRC, and pAUROC are semi-proper, because these
rank-based measures are invariant to monotonic trans-
formations of probability estimates.*® Dividing all ADNEX
probabilities by 100 does not change the value of these
measures.

There are no grounds to label AUROC as misleading or
overoptimistic.’** Discrimination measures are not meant
to reflect differential misclassification costs, and class
imbalance should not be conflated with misclassification
costs or medical relevance. Unlike AUROC, AUPRC and
PAUROC do not have a clear focus (second key character-
istic). AUPRC and pAUROC mix statistical performance
with aspects of clinical utility without following deci-
sion—analytical principles. For AUPRC, the PR curve does
not directly consider true negatives. Although true neg-
atives might be highly irrelevant for selected non-medical
applications, such errors are generally important in medical
applications. For pAUROC, a statement such as “we need at
least 90% sensitivity because we want to find at least 90% of
the cancer cases” might appear reasonable at face value.
However, depending on specificity and prevalence, this
could require different decision thresholds to classify
individuals as high risk® Consequently, there is no
decision—analytical basis for this approach.

Nevertheless, although discriminatory ability is essential
for predictive AI, AUROC alone cannot be used to identify a
model as good or useful.*! Visualisation through ROC or PR
curves is acceptable, but in our experience, these plots do
not provide useful information beyond that provided by
summary measures (eg, AUROC) or relevant clinical utility
measures (eg, net benefit).***

Figure 1 shows the ROC and PR curves and presents
PAUROC for the case study for the (unsupported) argu-
ment that a sensitivity less than 0-8 is unacceptably low. The
ADNEX model had an AUROC of 0-91 (95% CI 0-89-0-93)
and an AUPRC of 0-89 (95% CI 0-86-0-91). Ignoring sen-
sitivity values below 0-8, pAUROC was 0-14 (95% CI
0-13-0-15).

Calibration

Several approaches have been suggested in the statistical
and machine learning literature to address calibration.
These approaches can be classified into three increasingly
stringent levels, labelled as mean, weak, and moderate
calibration.® The first two levels are mostly known from the
statistical literature. Research on the quantification of a
fourth level, strong calibration, is ongoing. Strong calibration
is discussed in the appendix (p 9).

Mean calibration (or calibration-in-the-large) evaluates
whether the model’s average estimated probability equals
the observed prevalence in the dataset. Two measures for
calibration-in-the-large are the observed over expected (O:E)
ratio and the calibration intercept. ADNEX had an O:E ratio
of 1-23 (95% CI 1-17-1-29), indicating that 23% more

www.thelancet.com/digital-health Vol 7 December 2025

1.0 — AUROC0-91

0-8

0-6

0-4-]

Sensitivity or recall

0-2

0 T T T 1
0 0-2 0-4 06 08 1-0

1-Specificity

10 — AUPRC0-89

0-8

0-6

04

Precision or PPV

0-2

T T T 1
0 02 04 06 08 1-0
Sensitivity or recall

1094 — pAUROC 0-14
0-8
0-6

.

02

Not used to calculate pAUROC

Sensitivity or recall

0 T T T T 1
0 0-2 0-4 0-6 08 1:0

1—Specificity

Figure 1: ROC curve, PR curve, and pAUROC visualisation for the ADNEX model
ROC (A) and PR curves (B) for ADNEX model. (C) Calculation of pAUROC from
ROC curve; sensitivity less than 0-8 was considered to be unacceptably low.
ROC=receiver operating characteristic. PR=precision-recall. AUROC=area under
the ROC curve. pAUROC=partial AUROC. AUPRC=area under the PR curve.
PPV=positive predictive value.
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events were observed than expected based on the model
(table 1). The calibration intercept of the ADNEX model was
0-81 (95% CI 0-62-1-01), suggesting underestimation of
probabilities on average (intercept >0). The O:E ratio has a
more intuitive interpretation than the calibration intercept.

A model has weak calibration if calibration-in-the-large is
good and the estimated probabilities have, on average,
neither too much nor too little spread, as quantified by the
calibration slope.” Estimated probabilities with too much
spread are on average too close to 0 and 1 (slope <1),
whereas estimated probabilities with too little spread are on
average too close to the prevalence (slope >1).%>** During
internal validation, a calibration slope less than 1 can
indicate potential overfitting.* In our case study, the
ADNEX model had a calibration slope of 0-93 (95% CI
0-83-1-05), suggesting that the spread of the probabilities
was adequate.

Moderate calibration means that, among people with an
estimated probability of x, the observed proportion of the
event also equals x. The most common way of assessing
moderate calibration is by using a calibration plot, also
referred to as a reliability diagram.*—¢ Calibration plots can
be generated based on grouping individuals or smooth-
ing.>**” Figure 2 presents the grouped (ten groups of equal
size) and smoothed (using locally estimated scatterplot
smoothing or loess) plots of the data used in the case study.
The plots lie mostly above the diagonal, suggesting that the
probabilities were underestimations across the whole
range. A probable reason is that five of six participating
centres in the validation study were tertiary care centres,
resulting in a high prevalence of malignancy (49%).
Grouped plots cannot be used to comprehensively address
moderate calibration because individuals with very different
estimated probabilities might still end up in the same group.

Several summary measures, such as the expected cali-
bration error (ECE) for grouped plots and the estimated
calibration index (ECI) and integrated calibration index
(ICI) for smoothed plots, have been suggested for
calibration plots.”** Similar to statistical tests such as the
Hosmer—Lemeshow test, the proposed summary measures
cannot inform on the direction of miscalibration.**¢' Fur-
ther, ECE, ECI, and ICI depend on the grouping or
smoothing methods used and have issues with statistical
consistency.” Improved summary measures are being
researched.®® Therefore, calibration plots including confi-
dence intervals are key tools for assessing calibration by
visualising calibration performance conditional on
estimated risk.

All discussed calibration measures are semi-proper,*
with a focus on statistical performance (second key
characteristic).

Overall performance

Basic measures of overall performance include likelihood-
based measures, logloss (also known as cross-entropy or the
negative loglikelihood) parameters, and Brier score.®***
Measures that express performance relative to a null model

include scaled Brier (also known as Brier skill score or index
of prediction accuracy) and R-squared measures of the
proportion of explained variation, such as the McFadden,
Cox—Snell, and Nagelkerke’s R-squared.®* Less common
overall measures are the discrimination slope (also known
as the coefficient of discrimination or the probabilistic
AUROC) and the mean absolute prediction error.'*!”7°

Loglikelihood, logloss, and Brier score are strictly proper,
scaled Brier and R-squared measures are asymptotically
strictly proper (ie, strictly proper when sample size is high,
for instance, above 100), and discrimination slope and
mean absolute prediction error are improper.??”7* All dis-
cussed overall measures have a focus on statistical
performance.

Overall performance measures used in our case study are
presented in table 1. Plots for overall performance meas-
ures show the distribution of the estimated probabilities for
events and non-events separately. Figure 3 shows violin
plots for the ADNEX model, indicating that patients with
benign tumour mostly had very low estimated probabilities
of malignancy. Patients with malignancy mostly had
moderate-to-high estimated probabilities, with less peaked
distribution.

Classification measures

At the commonly recommended threshold of 10% in our
case study,” ADNEX classified 578 patients as high risk, of
whom 414 had a malignant tumour (true positive) and
164 had a benign tumour (false positive). The remaining
316 patients were classified as low risk, of whom 296 had a
benign tumour (true negative) and 20 had a malignant
tumour (false negative).

Classification measures are divided into summary
measures and descriptive partial measures.”? Common
partial measures include sensitivity (or recall), specificity,
PPV (or precision), and negative predictive value (NPV).
Sensitivity and specificity assess classifications conditional
on the observed outcome, which is unknown at prediction
time. PPV and NPV are more clinically relevant, as they
assess the outcome conditional on the risk classification.

As summary measures, we discuss classification accur-
acy, balanced accuracy, Youden index, kappa, diagnostic
odds ratio, F1, and Matthew’s correlation coefficient
(MCC).”*” F1 and MCC were introduced to address the
challenges caused by class imbalance, where classification
accuracy can be inflated by classifying all patients as low
risk when the event is rare.”*® F1 resembles AUPRC and
shares several downsides: (1) F1 ignores true negatives,
(2) F1 has no intuitive interpretation, and (3) the absolute
value of F1 changes by simply switching the outcome labels
(ie, when 1 becomes 0 and 0 becomes 1).”7”® These issues
hold for the more general F,, class of measures, of which
F1 is a special case.”® Similar to F1, MCC has no intuitive
interpretation.

At a given relevant decision threshold ¢, all classification
measures are improper (Appendix pp 3-6). Some classifi-
cation measures (balanced accuracy, Youden, and F1) are
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semi-proper when t=0-5 (classification accuracy) or when
t equals the true prevalence; however, these values of t are
rarely the most clinically relevant thresholds.” F1 is the only
summary measure without a clear focus on statistical
performance, as it conflates classification with clinical
utility.

Plots relevant to classification performance include the
ROC and PR curves, which show partial classification
measures across all possible decision thresholds.
A limitation of these plots is that the thresholds are not
easily visible (figure 1).* An alternative plot is a classifica-
tion plot, which has the probability threshold on the x-axis
and one or more classification measures on the y-axis
(appendix p 24).%

At a threshold of 10%, the ADNEX model showed a
classification accuracy of 0-79 (95% CI 0-77-0-82), F1 score
of 0-82 (0-79-0-84), and MCC of 0-63 (0-58-0-67) (table 1).

Clinical utility

In line with classic decision—analytical theory, clinical utility
focuses on the quality of decisions based on model classi-
fications that correspond to a clinically relevant thresh-
old.’**! To assess utility, misclassification costs are explicitly
considered. The most used measure for clinical utility in
prediction studies in health care is net benefit.?**2** The
maximum value of net benefit equals the prevalence.
Standardised net benefit equals net benefit divided by
prevalence, and its maximum value is 1.* Net benefit sets
the decision threshold based on the misclassification costs,
following the classic connection between both.® Setting
misclassification costs is not straightforward, and dis-
agreements can occur about what the costs should be
(appendix p 13).* Therefore, net benefit or standardised net
benefit is plotted in a decision curve for a range of reason-
able decision thresholds.?*#? Net benefit and standardised
net benefit are semi-proper; the probability estimates below
the threshold can be anything as long as they are below the
threshold, and the same goes for probability estimates
above the threshold.*

A related measure is the expected cost.®*** In contrast to
net benefit, expected cost searches for the decision thresh-
old that minimises cost given the misclassification costs.
Miscalibration of the model might thus be reflected in the
decision threshold at which expected cost is minimised,
whereas net benefit fixes the threshold such that mis-
calibration reduces the net benefit value.® Expected cost is
semi-proper because it is insensitive to rank-preserving
transformations of the probabilities. If we normalise the costs
to sum to 1, we can plot expected cost for a range of reasonable
normalised costs of a false positive or false negative.

Following decision theory, the key concern is to check
whether the model has better utility than the reference
strategies (to either treat everyone or treat no one) and, if
relevant, competing models. For our ADNEX case study, if
we accept to intervene in up to ten patients per true positive,
we consider that the benefit of a true positive (or the harm of
a false negative) is nine times higher than the harm of a
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Figure 4: Decision curves with net benefit, standardised net benefit, and
expected cost for the ADNEX model

Decision curves with net benefit (A), standardised net benefit (B), and expected
cost for our case study (C). We show the full x-axis range for educational
purposes. As explained in the Clinical utility section, a reasonable range of
decision thresholds is 0-05 to 0-40. This range corresponds to a range of
normalised costs between 0-05 and 0-40 on the curve for expected cost. While

false positive. The associated decision threshold for these
misclassification costs is 0-1.** For expected cost, the nor-
malised cost of a false negative is 0-9 (vs 0-1 for a false
positive). We further assume that the range of reasonable
thresholds is 0-05 to 0-40 (normalised cost of false negatives
between 0-60 and 0-95). The (standardised) net benefit was
better for ADNEX than for the reference strategies across all
reasonable decision thresholds (figure 4A-B). The expected
cost curve gives the same impression (figure 4C). The net
benefit of the model at t=0-1 was 0-44. For a normalised cost
of a false negative of 0-9, expected cost was minimised to
0-35 at t=0-06.

Results after recalibration

Graphical displays of model performance for the recali-
brated model are shown in the appendix (pp 25-29). The
calibration plotis closer to the diagonal after recalibration in
the validation dataset. Table 1 provides all performance
measures for the ADNEX model before and after recali-
bration. All strictly proper measures improved after recali-
bration. Semi-proper measures either improved or
remained unchanged. For example, owing to the rank-
preserving updating method, recalibration cannot improve
discrimination measures such as AUROC as they are based
on ranks. The improper summary measures for classifica-
tion (except diagnostic odds ratio) worsened remarkably.
Some partial classification measures improved (sensitivity
and NPV), whereas others worsened (specificity and PPV).
The improper measures for overall performance improved.
The worsening of most improper performance measures
after recalibration illustrates the importance of the
properness concept.

Discussion

We evaluated 32 classic and contemporary performance
measures across five performance domains (discrimin-
ation, calibration, overall performance, classification, and
clinical utility) for predictive Al models intended for med-
ical practice. When validating the performance of a pre-
diction model, we warn against the use of measures thatare
improper (13 measures) or that do not have a clear focus on
either statistical or decision—analytical performance (three
measures; table 2). Remarkably, F1 is the only measure
violating both characteristics. Improper measures might
mislead researchers instead of clarifying the performance of
a model. Measures that conflate statistical and decision—
analytical performance without properly accounting for
misclassification costs are ambiguous and should be replaced
with dedicated measures for clinical utility.

plots (A), (B), and (C) shows results for decision thresholds or normalised costs
between 0 and 1 for didactical reasons, it is recommended to restrict the x-axis
to the reasonable range when presenting a decision curve in a validation study.
(A) also shows a smoothed curve using central moving averages. All refers to the
net benefit or expected cost of the default strategy to classify all individuals as
high risk. None refers to the net benefit or expected cost of the default strategy
to classify all individuals as low risk.
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Recommendation

Remarks

Discrimination
AUROC

AUPRC and pAUROC
ROC curve and PR curve

Calibration
O:E ratio

Calibration intercept and
calibration slope

ECI, ICI, and ECE

Calibration plot or reliability
diagram

Overall performance

Loglikelihood, Brier, R? measures
Discrimination slope and MAPE
Risk distribution plots

Classification

Classification accuracy, balanced
accuracy, Youden index, DOR,
kappa, F1, and MCC

Sensitivity (recall) and specificity

PPV (precision) and NPV

Classification plot

Clinical utility

NB or standardised NB (with a
decision curve) and EC (with a
cost curve)

Recommended
Inadvisable

Neither inadvisable nor
essential

Neither inadvisable nor
essential

Neither inadvisable nor
essential

Not essential

Recommended

Neither inadvisable nor
essential

Inadvisable

Recommended

Inadvisable

Not essential; can be
descriptive if reported
together

Not essential; can be
descriptive if reported
together

Neither inadvisable nor
essential

Recommended

This measure quantifies discrimination, which is a key component of statistical model
performance.

These measures attempt to move beyond a statistical assessment but violate decision-analytical
principles.

These plots provide limited additional information over AUROC.

This measure is interpretable but provides only a partial assessment of calibration; O:E ratio is often
1 or close to 1 during internal validation.

These measures are hard to interpret and provide a partial assessment of calibration; during
internal validation, calibration slope can be used to gauge overfitting.*®

These measures summarise calibration plots, concealing the nature and direction of miscalibration,
and struggle with statistical consistency.

This measure is the most insightful approach to assess calibration, particularly when smoothing is
used rather than grouping; for internal validation, a plot is preferred but reporting only the
calibration slope is acceptable; for external validation, a calibration plot is strongly recommended,
with indications of uncertainty (eg, by 95% Cls).

We advise to evaluate discrimination and calibration separately. These measures are highly relevant
for model selection tasks, which are beyond the scope of this Viewpoint.

These measures are improper; ie, values can be better for incorrect models than for the correct
model.

Displaying the distribution of the risk estimates for each outcome category provides valuable
insights into a model’s behaviour.

These measures are improper at clinically relevant decision thresholds; in addition, some measures
are hard to interpret.

Although improper on their own, they can be presented descriptively if reported together.
However, these measures are largely theoretical as they condition on the predicted outcome.

Although improper on their own, they can be presented descriptively if reported together. PPV and
NPV are highly practical measures because they condition on the classification.

Classification plots could be presented descriptively, showing either sensitivity and specificity or
PPV and NPV by threshold.

Important measures to quantify to what extent better decisions are made. Decision curves of NB
allow one to show potential clinical utility at various clinically relevant decision thresholds relative
to default decisions (and competing models).

AUPRC=area under the precision-recall curve. AUROC=area under the receiver operating characteristic curve. DOR=diagnostic odds ratio. EC=expected cost. ECE=expected
calibration error. ECl=estimated calibration index. ICl=integrated calibration index. MAPE=mean absolute prediction error. MCC=Matthew's correlation coefficient. NB=net benefit.
NPV=negative predictive value. O:E ratio=observed over expected ratio. pAUROC=partial AUROC. PPV=positive predictive value. PR=precision-recall. ROC=receiver operating

characteristic.

Table 2: Recommendations and remarks for different measures and plots in the context of validating a prediction model to support clinical decision making

We argue that performance assessment of predictive Al
models intended for medical practice should focus on dis-
crimination, calibration, and clinical utility.*® Discrimin-
ation and calibration aid the modeller and clinician to
understand how a model can be improved. Poor discrim-
ination indicates that other predictors facilitating improved
distinction between individuals with and without the event
could be selected. Miscalibration can compromise pre-
dictive Al application by leading to systematic overtreat-
ment or undertreatment.® Miscalibration is often not just a
problem of the model but a sign that we need to improve
our understanding of the various contexts in which the
model is validated and used.” Unfortunately, calibration
measures are still under-reported.”>* Overall performance

www.thelancet.com/digital-health Vol 7 December 2025

measures combine discrimination and calibration per-
formance, making them less informative than separate
assessments of discrimination and calibration perform-
ance. Clinical utility focuses on the decision maker and the
patient by evaluating whether a model leads to improved
clinical decisions on average.

We recommend the following core set of measures and
plots that should be reported: AUROC, a smoothed cali-
bration plot, a clinical utility measure such as net benefit
with a decision curve, and a figure showing probability
distributions for each outcome category (table 2). When
internally validating a predictive Al model, calibration
might be less important because model development and
internal validation are based on individuals from the exact
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same population. Calibration is more important for exter-
nal validation, when models are evaluated in different
contexts and populations. Although a calibration plot is
useful during internal validation, a limited assessment
using calibration slope and perhaps O:E ratio can suffice;
however, we would expect an O:E ratio close to 1 for well-
developed models. In addition to the recommended core
set, PPV in combination with NPV, or sensitivity in com-
bination with specificity, can be reported descriptively.
These measures are improper when used alone. Reported
measures and plots should be accompanied by confidence
intervals when possible, except for clinical utility measures,
for which quantification of uncertainty is a topic of recent
debate and research.>>

Class imbalance has received a lot of attention for model
development and performance assessment. We argue that
class imbalance is not as problematic as often claimed. The
extent of class imbalance is not mathematically propor-
tional to the extent of imbalance in misclassification costs.
Class imbalance is related to the target population as an
epidemiological feature of the data, whereas misclassifica-
tion costs are clinical concepts that relate to the context of
decision making. Misclassification costs are informed by
the nature and effect of the medical intervention at hand
(eg, the decision to perform surgery or not).2"**# There-
fore, we advise against using F1, AUPRC, or pAUROC, in
favour of a dedicated clinical utility measure.”* Of note, we
do not make claims regarding other situations in health
care when true negatives are not well defined, such aslesion
detection.®

Three topics related to performance assessment deserve
emphasis: sample size, performance heterogeneity, and
reporting transparency. First, adequate sample size is
important to evaluate performance with sufficient preci-
sion. Previous recommendations were to include at least
100 to 200 individuals in the smallest outcome category.’>*
More specific sample size calculations are now available for
regression-based models."™ Often, more data are needed
when comparing calibration between models.””* Second,
heterogeneity in model performance should be expected
based on differences in populations and measurement pro-
cedures between locations, settings, or time periods.*"10>1*
Meta-analysis and meta-regression methods can be used to
quantify and understand heterogeneity in performance
across external validation studies.'®?% Naive comparison
of models validated using different external datasets,
reflecting different populations from different settings, can
lead to wrong conclusions.” Third, comprehensive reporting
of predictive Al modelling studies is imperative, which can
be done by adhering to the TRIPOD+ATI and related report-
ing guidelines. ™ To avoid performance hacking,
increased attention should be paid to publishing protocols in
advance, as well as to sharing of analysis code and data where
reasonably possible.'

A limitation of this Viewpoint is that we focused only on
performance measures for binary outcomes. Nevertheless,
the principles also hold for other types of outcomes, such as

nominal, ordinal, time-to-event, or competing risk out-
comes. A second limitation is that we could discuss several
other topics in depth. We did not address counterfactual
prediction (prediction under hypothetical interventions),
which has deservedly gained traction recently."'*? Also,
discussing all measures is impossible, and research on
performance measures is ongoing. For example, calibra-
tion is an active area of research focusing on aspects such as
strong calibration, quantifying the degree of miscalibration,
and uncertainty.®>'**"** Furthermore, we did not directly
discuss model comparisons, although head-to-head
comparisons of competing models on the same external
validation dataset is of particular importance."¢ A specific
topic related to model comparison is evaluating the
incremental value of adding a new predictor to an existing
model."” Although competing models can be evaluated
using the same core set of measures and visualisations,
proper overall measures become more interesting for
tasks such as model selection and comparison. Dedicated
measures, such as the widely used but improper net
reclassification improvement, are available for evaluating
competing models. 1811

In conclusion, we argue that performance measures
should be proper and clearly focus on either purely statis-
tical or decision—analytical evaluation. To evaluate predict-
ive Al models for medical practice, the recommended core
set of performance measures that is suitable for most cir-
cumstances include AUROC, calibration plot, a clinical utility
measure such as net benefit with decision curve analysis, and a
plot showing the distribution of risk estimates.
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