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Numerous measures have been proposed to illustrate the performance of predictive artificial intelligence (AI) 
models. Selecting appropriate performance measures is essential for predictive AI models intended for use in 
medical practice. Poorly performing models are misleading and may lead to wrong clinical decisions that can be 
detrimental to patients and increase financial costs. In this Viewpoint, we assess the merits of classic and con-
temporary performance measures when validating predictive AI models for medical practice, focusing on models 
that estimate probabilities for a binary outcome. We discuss 32 performance measures covering five performance 
domains (discrimination, calibration, overall performance, classification, and clinical utility) along with corre-
sponding graphical assessments. The first four domains address statistical performance, whereas the fifth domain 
covers decision–analytical performance. We discuss two key characteristics when selecting a performance measure 
and explain why these characteristics are important: (1) whether the measure’s expected value is optimised when 
calculated using the correct probabilities (ie, whether it is a proper measure) and (2) whether the measure solely 
reflects statistical performance or decision–analytical performance by properly accounting for misclassification costs. 
17 measures showed both characteristics, 14 showed one, and one (F1 score) showed neither. All classification 
measures were improper for clinically relevant decision thresholds other than when the threshold was 0⋅5 or equal to 
the true prevalence. We illustrate these measures and characteristics using the ADNEX model which predicts the 
probability of malignancy in women with an ovarian tumour. We recommend the following measures and plots as 
essential to report: area under the receiver operating characteristic curve, calibration plot, a clinical utility measure 
such as net benefit with decision curve analysis, and a plot showing probability distributions by outcome category.

Introduction
The medical literature abounds with predictive artificial 
intelligence (AI) models that estimate the probability of 
individuals having (diagnostic) or developing (prognostic) a 
disease or health state of interest (the event), also known as 
clinical prediction models. 1,2 Although these models were 
traditionally developed using statistical methods such as 
regression analysis, the use of machine learning algorithms 
with improved flexibility is increasing. For instance, a 
traditional logistic regression model might aim to predict 
the risk of permanent stoma in patients undergoing 
resection of left-sided obstructive colon cancer using 
demographic, clinical, and laboratory measurements. 3 

A more contemporary model built using deep learning 
might aim to predict the presence of atrial fibrillation based 
on sinus rhythm electrocardiograms. 4

Regardless of the modelling approach, the performance 
of predictive AI models intended for medical practice 
should be properly evaluated. Consequently, selecting 
appropriate performance measures for predictive AI in 
health care is essential, since poorly performing models 
might lead to wrong clinical decisions that can be detri-
mental to patients and increase financial costs. 5 Although 
numerous such measures have been suggested, clarity is 
needed. There is occasional conflict regarding the meas-
ures that are recommended in the medical, statistical, and 
machine learning literature. 6–11

Performance assessment is especially relevant for both 
external and internal validation studies. An external valid-
ation study evaluates model performance using a dataset 
that includes individual participant data from a target 
population in which the model might be used. 12–15 Unlike 
the training dataset, the external validation dataset includes 
data from individuals from different locations, time peri-
ods, or settings. In contrast, internal validation evaluates 
model performance using new individuals from the same 
population as the training dataset using methods such as 
cross-validation, bootstrapping, or (repeated) train–test 
splitting. 12,13 Thus, internal validation refers not to model 
selection but to an independent evaluation of the selected 
model.
In this Viewpoint, we assess classic and contemporary 

performance measures for model evaluation from the 
statistical and machine learning literature and provide 
recommendations for researchers, end users (ie, health 
care staff), and other stakeholders such as policy makers. 
We present a taxonomy of performance domains, describe 
key characteristics for performance measures, discuss 
these measures in combination with an illustrative case 
study, and formulate recommendations.

A taxonomy of five performance domains
We classify performance measures into five domains: 
discrimination, calibration, overall performance,
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classification, and clinical utility. Among these domains, 
the first three evaluate performance based on probability 
estimates (Appendix p 2).
Discrimination focuses on the extent to which the model 

assigns higher probabilities of the event for individuals with 
the event than for those without. Discrimination reflects 
relative performance; ie, it does not matter how high or low 
the estimated probabilities are, only whether they allow to 
discriminate between individuals with versus without the 
event.
Calibration focuses on the extent to which the probability 

estimates correspond to observed event proportions. Cali-
bration reflects absolute performance by evaluating whether 
estimates are too high or too low. Models can therefore have 
good discrimination but poor calibration, and vice versa. 
Overall performance of a model combines discrimination 

and calibration by quantifying how closely the probability 
estimates approach the actual outcomes of 0 (no event) or 
1 (event). 7,16,17

The fourth and fifth performance domains require a 
threshold on the estimated risk of the event to classify 
individuals into two mutually exclusive groups: low-risk 
(estimated risk below the threshold) and high-risk (esti-
mated risk equal to or above the threshold) groups. These 
groups are linked to a decision about an intervention 
(eg, surgery), which would be suggested for individuals at 
high risk but not for those at low risk. The threshold can 
therefore be referred to as the decision threshold. 
Although multiple decision thresholds can be used to 
separate individuals into three or more groups, we focus 
on the common single-threshold case.
The fourth performance domain, classification, focuses 

on the extent to which individuals are correctly classified as 
high or low risk. This domain is based on the contingency 
table or confusion matrix, a cross-tabulation of classi-
fications (low vs high risk) and outcomes (event vs no event). 
Classification performance is perfect when all individuals 
with an event have a probability above the decision 
threshold and all individuals without an event have a 
probability below the threshold. Classification performance 
is influenced by discrimination and calibration performance. 
The fifth domain, clinical utility, goes one step further by 

explicitly incorporating misclassification costs when 
evaluating classifications of individuals into low-risk and 
high-risk groups. Misclassification costs is an established 
term that refers broadly to the harms of misclassification of 
any kind, where misclassifications refer to false positives 
and false negatives. 18,19 In biomedical applications, the 
consequences of a false negative (for instance, not referring 
a woman with ovarian malignancy for advanced surgery) 
are almost always different from the consequences of a false 
positive (referring a woman with a benign tumour for 
advanced surgery). Clinical utility evaluates the quality of 
decisions based on the decision threshold, and whether 
using a model leads to better decisions than not using it or 
than a competing model. The decision threshold should 
therefore be clinically relevant and linked with

misclassification costs (panel). Due to its focus on the 
quality of decisions, clinical utility is the most important 
performance domain.
We discuss 32 (three discrimination, six calibration, nine 

overall, 11 classification, and three clinical utility) per-
formance measures (table 1), along with corresponding 
visual assessments.

Key characteristics of an informative 
performance measure
We define two key characteristics that a performance 
measure should meet: (1) the measure should be proper, 
and (2) it should have a clear focus on solely reflecting 
statistical or decision–analytical value by properly consid-
ering differential misclassification costs. Measures that do 
not possess the first characteristic cannot be trusted, 
whereas measures not possessing the second are equivocal. 
A third desirable characteristic is intuitive interpret-
ation. 24,25 We do not discuss this characteristic further, as 
interpretability is subjective and influenced by background 
knowledge and familiarity.

Properness
A performance measure is called proper if its expected 
value is optimal when using the correct model, which is the 
model that gives the correct probabilities based on the 
predictors or features in the model. 26–30 Here, expected value 
refers to the average value obtained after repeating the 
validation study multiple times. In any given dataset, par-
ticularly when sample size is low, the correct model can be 
outperformed by an incorrect model due to random vari-
ation. The importance of properness is that a proper 
measure cannot be fooled: in expectation, the correct model 
cannot be outperformed by an incorrect one. A measure is 
strictly proper when its expected value is optimal only for 
the correct model. When the expected value is optimal for 
the correct model and for some incorrect models, a meas-
ure is called semi-proper. When an incorrect model can 
have a better expected value than the correct model, the 
measure is termed improper and cannot be trusted. The 
properness status for the 32 measures is listed in table 1, 
and an illustration is provided in the Appendix (pp 3–6).

Clear focus on statistical or decision–analytical evaluation
There is a clear distinction between statistical and deci-
sion–analytical performance evaluation of predictive AI 
models for medical practice. The first four performance 
domains (appendix p 2) focus on different aspects of stat-
istical performance, whereas the clinical utility domain 
focuses on decision–analytical performance. Statistical 
performance measures are essential for model evaluation 
but cannot be used to find out whether a model should be 
used in practice: it is not appropriate to cite, for example, 
good discrimination and calibration or conclude that a 
model can be used to aid decisions about ovarian surgery. If 
a performance measure aims to go beyond measuring 
statistical value, it should incorporate misclassification
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costs in accordance with decision–analytical principles 
(panel). If misclassification costs influence a performance 
measure in an implicit or ad hoc way, the measure neither 
assesses statistical performance nor adequately evaluates 
the quality of decisions for clinical practice.

Case study: external validation of a diagnostic model for 
ovarian cancer
As a case study, we consider prediction of malignancy in 
women with an ovarian tumour. The ADNEX model, 
developed by the International Ovarian Tumor Analysis 
(IOTA) consortium (authors BVC and DT are part of this 
consortium), preoperatively estimates the probability of 
malignancy in women with an ovarian tumour who are 
scheduled for surgery. 31 The model can inform decisions 
regarding the type of surgery (advanced vs conservative) for 
patients examined at an oncology centre or regarding 
referral to an oncology centre for patients examined else-
where. 32 ADNEX was developed on the data from 
5909 individuals recruited between 1999 and 2012 in 
24 secondary and tertiary care centres from 10 countries 
(Italy, Belgium, Sweden, Czech Republic, Poland, France, 
United Kingdom, China, Spain, and Canada). The Tran-
sIOTA study externally validated ADNEX for its ability to 
distinguish benign from malignant tumours, using data 
from 894 women recruited between 2015 and 2019 in 
one secondary and five tertiary care centres in 
four countries (Belgium, Italy, Czech Republic, and United 
Kingdom). There were 434 women with a malignant

tumour (prevalence 49%). 32 The retrospective use of data 
from the IOTA consortium was approved by the Research 
Ethics Committee from the University Hospitals Leuven, 
IOTA’s leading ethics committee (S64709).
For didactic purposes, we use this dataset to calculate all 

discussed performance measures with 95% confidence 
intervals (95% CI) and show all discussed visualisations. 
Confidence intervals were obtained using the percentile 
bootstrap method on 1000 bootstrap samples. We eval-
uated the performance of ADNEX as is and after updating 
using logistic recalibration (table 1). To update ADNEX, 
we fitted a logistic regression model of the outcome on the 
logit of the estimated event probability (the linear pre-
dictor). 2,33 This method is similar to Platt scaling, a well 
known method in machine learning to improve the cali-
bration of predictions. 34,35 Logistic recalibration essen-
tially applies a linear transformation to the linear 
predictor. This method is thus a rank-preserving method, 
and the ranking of patients based on the estimated 
probability of malignancy remains the same before and 
after updating.
All R and Python scripts, as well as the estimated risk of 

malignancy and outcomes for the 894 participants, are 
available in the GitHub repository.

Performance measures
We discuss the selected measures briefly in this section. 
A detailed description of the measures, including formulas, 
are presented in the Appendix (pp 7–23).

Panel: Defining a decision threshold

The primary aim of most predictive AI models in medical practice is to support subsequent decision making. Probability estimates may 
guide health professionals and patients to improve health outcomes by avoiding a burdensome intervention with limited expected 
benefit for those at low risk and facilitating intervention selection for those at high risk. Consequently, the decision threshold should be 
defined on medical rather than statistical grounds. 20

Often, however, a threshold is chosen by optimising a statistical measure such as the Youden index (sensitivity + specificity − 1). When 
maximising the Youden index, sensitivity and specificity are considered equally important; this is rarely the case in medicine. Using 
statistical arguments to set a decision threshold is inconsistent with decision theory and detached from practical use by clinicians.

Instead, once the decision that the model intends to support is clearly defined, the four possible consequences of using the model to 
support that decision should be considered:
• True positives (individuals with the event and classified as high risk)
• True negatives (individuals without the event and classified as low risk)
• False negatives (individuals with the event and classified as low risk)
• False positives (individuals without the event and classified as high risk) 18,21,22

The weight of these consequences might vary by the nature and effects of the intervention, the health-care system, or by clinician and 
patient.

The case study in this Viewpoint was when patients required surgical removal of an ovarian mass. The assessment of different neoplasias 
in the adnexa (ADNEX) model was used to decide whether advanced or conservative surgery was needed. A decision threshold of 0⋅1 
(10%) for the probability of malignancy is often recommended. 23 Suggesting advanced surgery to patients who actually have a 10% risk of 
malignancy based on the ADNEX predictors implies performing advanced surgery in ten individuals per true positive (ie, performing 
advanced surgery in a patient with a malignant tumour). 18 In other words, we accept up to nine false positives (ie, performing advanced 
surgery in up to nine patients with benign tumour) per true positive. Hence, using this threshold assumes that the medical benefit of 
advanced surgery on a malignant tumour is nine times greater than the harm of unnecessary advanced surgery in individuals with a 
benign tumour. 18 In the section on Clinical utility, we describe how measures for clinical utility incorporate misclassification costs.

For more on the R and Python 
scripts, see https://github.com/ 
benvancalster/ 
PerfMeasuresOverview
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Discrimination
The definition of discrimination implies that discrimin-
ation measures should rely only on the ranks of the esti-
mated probabilities in the dataset. 36 The key measure is the 
concordance probability or C-statistic. For binary outcomes, 
the C-statistic is equal to area under the receiver operating 
characteristic curve (AUROC). 37,38 Several researchers have 
advised against using AUROC when prevalence is far from

0⋅5 (class imbalance). AUROC has been described as mis-
leading or overoptimistic when the event is rare because it 
ignores the difficulty of obtaining both acceptable positive 
predictive value (PPV or precision) and sensitivity (or recall) 
or does not consider misclassification costs. 39–44 The pre-
cision–recall (PR) curve and the area underneath (AUPRC) 
are often recommended as alternatives to the ROC curve 
and AUROC. 41,45,46 Another measure suggested instead of

Characteristics ADNEX results

Properness* Focus† Before recalibration After recalibration

Discrimination
AUROC, AUC, or C-statistic + + 0⋅911 (0⋅894 to 0⋅927) 0⋅911 (0⋅894 to 0⋅927)
AUPRC or AP + − 0⋅895 (0⋅862 to 0⋅921) 0⋅895 (0⋅862 to 0⋅921)
pAUROC (sensitivity ≥0⋅8) + − 0⋅141 (0⋅130 to 0⋅151) 0⋅141 (0⋅130 to 0⋅151)
Calibration
O:E ratio + + 1⋅228 (1⋅171 to 1⋅288) 1⋅000 (0⋅955 to 1⋅046)
Calibration intercept + + 0⋅810 (0⋅619 to 1⋅006) 0⋅000 (−0⋅180 to 0⋅184)
Calibration slope + + 0⋅934 (0⋅833 to 1⋅051) 1⋅000 (0⋅892 to 1⋅126)
ECI + + 0⋅105 (0⋅063 to 0⋅160) 0⋅002 (0⋅001 to 0⋅017)
ICI + + 0⋅094 (0⋅074 to 0⋅118) 0⋅014 (0⋅009 to 0⋅038)
ECE + + 0⋅091 (0⋅072 to 0⋅117) 0⋅017 (0⋅019 to 0⋅050)
Overall performance
Loglikelihood ++ + −370 (−407 to −334) −337 (−368 to −307)
Logloss or cross entropy ++ + 370 (334 to 407) 377 (307 to 368)
Brier score ++ + 0⋅133 (0⋅118 to 0⋅147) 0⋅118 (0⋅106 to 0⋅131)
Scaled Brier, Brier skill score, or IPA ++‡ + 0⋅469 (0⋅412 to 0⋅527) 0⋅526 (0⋅475 to 0⋅576)
McFadden R 2 ++‡ + 0⋅403 (0⋅343 to 0⋅461) 0⋅456 (0⋅405 to 0⋅504)
Cox–Snell R 2 ++‡ + 0⋅427 (0⋅379 to 0⋅471) 0⋅469 (0⋅429 to 0⋅502)
Nagelkerke R 2 ++‡ + 0⋅570 (0⋅505 to 0⋅629) 0⋅625 (0⋅573 to 0⋅670)
Coefficient of discrimination or discrimination slope − + 0⋅509 (0⋅478 to 0⋅540) 0⋅525 (0⋅495 to 0⋅556)
Mean absolute prediction error − + 0⋅243 (0⋅226 to 0⋅260) 0⋅237 (0⋅222 to 0⋅252)
Classification: summary measures (using t=0⋅1)
Classification accuracy at t –§ + 0⋅794 (0⋅768 to 0⋅819) 0⋅691 (0⋅661 to 0⋅723)
Balanced accuracy at t –¶ + 0⋅799 (0⋅776 to 0⋅822) 0⋅700 (0⋅677 to 0⋅724)
Youden index at t –¶ + 0⋅597 (0⋅551 to 0⋅643) 0⋅399 (0⋅353 to 0⋅448)
Diagnostic odds ratio at t − + 37⋅400 (24⋅600 to 68⋅500) 43⋅300 (23⋅600 to 119⋅000)
Kappa at t − + 0⋅592 (0⋅544 to 0⋅639) 0⋅392 (0⋅346 to 0⋅442)
F1 at t –¶ − 0⋅818 (0⋅792 to 0⋅843) 0⋅756 (0⋅727 to 0⋅782)
MCC at t − + 0⋅625 (0⋅581 to 0⋅667) 0⋅480 (0⋅438 to 0⋅522)
Classification: partial measures (using t=0⋅1)
Sensitivity or recall − + 0⋅954 (0⋅934 to 0⋅974) 0⋅984 (0⋅972 to 0⋅993)
Specificity − + 0⋅643 (0⋅603 to 0⋅686) 0⋅415 (0⋅370 to 0⋅463)
Positive predictive value or precision − + 0⋅716 (0⋅679 to 0⋅753) 0⋅614 (0⋅577 to 0⋅650)
Negative predictive value − + 0⋅937 (0⋅911 to 0⋅964) 0⋅965 (0⋅938 to 0⋅986)
Clinical utility|| (net benefit: t=0⋅1; expected cost: costs 9:1)
Net benefit + + 0⋅443 (0⋅411 to 0⋅475) 0⋅444 (0⋅411 to 0⋅478)
Standardised net benefit + + 0⋅912 (0⋅892 to 0⋅932) 0⋅915 (0⋅900 to 0⋅930)
Expected cost + + 0⋅355 (0⋅274 to 0⋅376)** 0⋅355 (0⋅274 to 0⋅376)**

*Properness: ++, strictly proper; +, semi-proper; –, improper. †Focus: +, measure focuses either on purely statistical or decision–analytical evaluation by properly addressing 
misclassification costs; –, measure mixes statistical and decision–analytical performance evaluation, and therefore, lacks a clear focus. ‡These measures are asymptotically strictly 
proper. §Semi-proper when t=0⋅5, which is rarely the clinically relevant threshold. ¶Semi-proper when t equals the true prevalence, which is rarely the clinically relevant threshold. 
||For clinical utility in particular, the use of confidence intervals and p values for measures of clinical utility contradicts the principles of decision analysis. **Expected cost was 
minimised at a decision threshold of 0⋅06 for the original model and 0⋅15 for the recalibrated model. AP=average precision. AUC or AUROC=area under the receiver operating 
characteristic curve. AUPRC=area under the precision–recall curve. ECE=expected calibration error. ECI=estimated calibration index. ICI=integrated calibration index. IPA=index of 
prediction accuracy. MCC=Matthew’s correlation coefficient. O:E ratio=observed over expected ratio. pAUROC=partial AUROC.

Table 1: Summary of performance measures discussed, assessment of two key characteristics, and results of ADNEX model in the case study before and after 
recalibration
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AUROC is the partial AUROC (pAUROC), which focuses 
on the part of the ROC curve where specificity or sensitivity 
reach a specific minimum tolerable level. 42,47 AUROC, 
AUPRC, and pAUROC are semi-proper, because these 
rank-based measures are invariant to monotonic trans-
formations of probability estimates. 48 Dividing all ADNEX 
probabilities by 100 does not change the value of these 
measures.
There are no grounds to label AUROC as misleading or 

overoptimistic. 36,49 Discrimination measures are not meant 
to reflect differential misclassification costs, and class 
imbalance should not be conflated with misclassification 
costs or medical relevance. Unlike AUROC, AUPRC and 
pAUROC do not have a clear focus (second key character-
istic). AUPRC and pAUROC mix statistical performance 
with aspects of clinical utility without following deci-
sion–analytical principles. For AUPRC, the PR curve does 
not directly consider true negatives. Although true neg-
atives might be highly irrelevant for selected non-medical 
applications, such errors are generally important in medical 
applications. For pAUROC, a statement such as “we need at 
least 90% sensitivity because we want to find at least 90% of 
the cancer cases” might appear reasonable at face value. 
However, depending on specificity and prevalence, this 
could require different decision thresholds to classify 
individuals as high risk. 50 Consequently, there is no 
decision–analytical basis for this approach.
Nevertheless, although discriminatory ability is essential 

for predictive AI, AUROC alone cannot be used to identify a 
model as good or useful. 51 Visualisation through ROC or PR 
curves is acceptable, but in our experience, these plots do 
not provide useful information beyond that provided by 
summary measures (eg, AUROC) or relevant clinical utility 
measures (eg, net benefit). 38,49

Figure 1 shows the ROC and PR curves and presents 
pAUROC for the case study for the (unsupported) argu-
ment that a sensitivity less than 0⋅8 is unacceptably low. The 
ADNEX model had an AUROC of 0⋅91 (95% CI 0⋅89–0⋅93) 
and an AUPRC of 0⋅89 (95% CI 0⋅86–0⋅91). Ignoring sen-
sitivity values below 0⋅8, pAUROC was 0⋅14 (95% CI 
0⋅13–0⋅15).

Calibration
Several approaches have been suggested in the statistical 
and machine learning literature to address calibration. 
These approaches can be classified into three increasingly 
stringent levels, labelled as mean, weak, and moderate 
calibration. 52 The first two levels are mostly known from the 
statistical literature. Research on the quantification of a 
fourth level, strong calibration, is ongoing. Strong calibration 
is discussed in the appendix (p 9).
Mean calibration (or calibration-in-the-large) evaluates 

whether the model’s average estimated probability equals 
the observed prevalence in the dataset. Two measures for 
calibration-in-the-large are the observed over expected (O:E) 
ratio and the calibration intercept. ADNEX had an O:E ratio 
of 1⋅23 (95% CI 1⋅17–1⋅29), indicating that 23% more
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Figure 1: ROC curve, PR curve, and pAUROC visualisation for the ADNEX model 
ROC (A) and PR curves (B) for ADNEX model. (C) Calculation of pAUROC from 

ROC curve; sensitivity less than 0⋅8 was considered to be unacceptably low. 
ROC=receiver operating characteristic. PR=precision–recall. AUROC=area under 
the ROC curve. pAUROC=partial AUROC. AUPRC=area under the PR curve. 
PPV=positive predictive value.
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events were observed than expected based on the model 
(table 1). The calibration intercept of the ADNEX model was 
0⋅81 (95% CI 0⋅62–1⋅01), suggesting underestimation of 
probabilities on average (intercept >0). The O:E ratio has a 
more intuitive interpretation than the calibration intercept. 
A model has weak calibration if calibration-in-the-large is 

good and the estimated probabilities have, on average, 
neither too much nor too little spread, as quantified by the 
calibration slope. 33 Estimated probabilities with too much 
spread are on average too close to 0 and 1 (slope <1), 
whereas estimated probabilities with too little spread are on 
average too close to the prevalence (slope >1). 52,53 During 
internal validation, a calibration slope less than 1 can 
indicate potential overfitting. 54 In our case study, the 
ADNEX model had a calibration slope of 0⋅93 (95% CI 
0⋅83–1⋅05), suggesting that the spread of the probabilities 
was adequate.
Moderate calibration means that, among people with an 

estimated probability of x, the observed proportion of the 
event also equals x. The most common way of assessing 
moderate calibration is by using a calibration plot, also 
referred to as a reliability diagram. 54–56 Calibration plots can 
be generated based on grouping individuals or smooth-
ing. 56,57 Figure 2 presents the grouped (ten groups of equal 
size) and smoothed (using locally estimated scatterplot 
smoothing or loess) plots of the data used in the case study. 
The plots lie mostly above the diagonal, suggesting that the 
probabilities were underestimations across the whole 
range. A probable reason is that five of six participating 
centres in the validation study were tertiary care centres, 
resulting in a high prevalence of malignancy (49%). 
Grouped plots cannot be used to comprehensively address 
moderate calibration because individuals with very different 
estimated probabilities might still end up in the same group. 
Several summary measures, such as the expected cali-

bration error (ECE) for grouped plots and the estimated 
calibration index (ECI) and integrated calibration index 
(ICI) for smoothed plots, have been suggested for 
calibration plots. 58–60 Similar to statistical tests such as the 
Hosmer–Lemeshow test, the proposed summary measures 
cannot inform on the direction of miscalibration. 54,61 Fur-
ther, ECE, ECI, and ICI depend on the grouping or 
smoothing methods used and have issues with statistical 
consistency. 62 Improved summary measures are being 
researched. 62 Therefore, calibration plots including confi-
dence intervals are key tools for assessing calibration by 
visualising calibration performance conditional on 
estimated risk.
All discussed calibration measures are semi-proper, 52 

with a focus on statistical performance (second key 
characteristic).

Overall performance
Basic measures of overall performance include likelihood-
based measures, logloss (also known as cross-entropy or the 
negative loglikelihood) parameters, and Brier score. 63,64 

Measures that express performance relative to a null model

include scaled Brier (also known as Brier skill score or index 
of prediction accuracy) and R-squared measures of the 
proportion of explained variation, such as the McFadden, 
Cox–Snell, and Nagelkerke’s R-squared. 65–69 Less common 
overall measures are the discrimination slope (also known 
as the coefficient of discrimination or the probabilistic 
AUROC) and the mean absolute prediction error. 16,17,70 

Loglikelihood, logloss, and Brier score are strictly proper, 
scaled Brier and R-squared measures are asymptotically 
strictly proper (ie, strictly proper when sample size is high, 
for instance, above 100), and discrimination slope and 
mean absolute prediction error are improper. 26,27,71 All dis-
cussed overall measures have a focus on statistical 
performance.
Overall performance measures used in our case study are 

presented in table 1. Plots for overall performance meas-
ures show the distribution of the estimated probabilities for 
events and non-events separately. Figure 3 shows violin 
plots for the ADNEX model, indicating that patients with 
benign tumour mostly had very low estimated probabilities 
of malignancy. Patients with malignancy mostly had 
moderate-to-high estimated probabilities, with less peaked 
distribution.

Classification measures
At the commonly recommended threshold of 10% in our 
case study, 23 ADNEX classified 578 patients as high risk, of 
whom 414 had a malignant tumour (true positive) and 
164 had a benign tumour (false positive). The remaining 
316 patients were classified as low risk, of whom 296 had a 
benign tumour (true negative) and 20 had a malignant 
tumour (false negative).
Classification measures are divided into summary 

measures and descriptive partial measures. 72 Common 
partial measures include sensitivity (or recall), specificity, 
PPV (or precision), and negative predictive value (NPV). 
Sensitivity and specificity assess classifications conditional 
on the observed outcome, which is unknown at prediction 
time. PPV and NPV are more clinically relevant, as they 
assess the outcome conditional on the risk classification. 
As summary measures, we discuss classification accur-

acy, balanced accuracy, Youden index, kappa, diagnostic 
odds ratio, F1, and Matthew’s correlation coefficient 
(MCC). 73–75 F1 and MCC were introduced to address the 
challenges caused by class imbalance, where classification 
accuracy can be inflated by classifying all patients as low 
risk when the event is rare. 76–80 F1 resembles AUPRC and 
shares several downsides: (1) F1 ignores true negatives, 
(2) F1 has no intuitive interpretation, and (3) the absolute 
value of F1 changes by simply switching the outcome labels 
(ie, when 1 becomes 0 and 0 becomes 1). 77,78 These issues 
hold for the more general F beta class of measures, of which 
F1 is a special case. 78 Similar to F1, MCC has no intuitive 
interpretation.
At a given relevant decision threshold t, all classification 

measures are improper (Appendix pp 3–6). Some classifi-
cation measures (balanced accuracy, Youden, and F1) are
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semi-proper when t=0⋅5 (classification accuracy) or when 
t equals the true prevalence; however, these values of t are 
rarely the most clinically relevant thresholds. 26 F1 is the only 
summary measure without a clear focus on statistical 
performance, as it conflates classification with clinical 
utility.
Plots relevant to classification performance include the 

ROC and PR curves, which show partial classification 
measures across all possible decision thresholds. 
A limitation of these plots is that the thresholds are not 
easily visible (figure 1). 38 An alternative plot is a classifica-
tion plot, which has the probability threshold on the x-axis 
and one or more classification measures on the y-axis 
(appendix p 24). 38

At a threshold of 10%, the ADNEX model showed a 
classification accuracy of 0⋅79 (95% CI 0⋅77–0⋅82), F1 score 
of 0⋅82 (0⋅79–0⋅84), and MCC of 0⋅63 (0⋅58–0⋅67) (table 1).

Clinical utility
In line with classic decision–analytical theory, clinical utility 
focuses on the quality of decisions based on model classi-
fications that correspond to a clinically relevant thresh-
old. 18,81 To assess utility, misclassification costs are explicitly 
considered. The most used measure for clinical utility in 
prediction studies in health care is net benefit. 21,82,83 The 
maximum value of net benefit equals the prevalence. 
Standardised net benefit equals net benefit divided by 
prevalence, and its maximum value is 1. 84 Net benefit sets 
the decision threshold based on the misclassification costs, 
following the classic connection between both. 18 Setting 
misclassification costs is not straightforward, and dis-
agreements can occur about what the costs should be 
(appendix p 13). 85 Therefore, net benefit or standardised net 
benefit is plotted in a decision curve for a range of reason-
able decision thresholds. 21,82 Net benefit and standardised 
net benefit are semi-proper; the probability estimates below 
the threshold can be anything as long as they are below the 
threshold, and the same goes for probability estimates 
above the threshold. 48

A related measure is the expected cost. 86–89 In contrast to 
net benefit, expected cost searches for the decision thresh-
old that minimises cost given the misclassification costs. 
Miscalibration of the model might thus be reflected in the 
decision threshold at which expected cost is minimised, 
whereas net benefit fixes the threshold such that mis-
calibration reduces the net benefit value. 89 Expected cost is 
semi-proper because it is insensitive to rank-preserving 
transformations of the probabilities. If we normalise the costs 
to sum to 1, we can plot expected cost for a range of reasonable 
normalised costs of a false positive or false negative.
Following decision theory, the key concern is to check 

whether the model has better utility than the reference 
strategies (to either treat everyone or treat no one) and, if 
relevant, competing models. For our ADNEX case study, if 
we accept to intervene in up to ten patients per true positive, 
we consider that the benefit of a true positive (or the harm of 
a false negative) is nine times higher than the harm of a

Ideal
Flexible calibration (loess)
Grouped observations

1

0

0

0·2

0·4

0·6

0·8

1·0

O
bs

er
ve

d 
pr

op
or

tio
n

0·2 0·4 0·6 0·8 1·00

Estimated probability

Figure 2: Calibration plot for the ADNEX model using ten groups of equal sample size and using a loess smoother 
on the estimated probability

Benign Malignant

Distribution of the event and non-event

0

0·25

0·50

0·75

1·00

Es
tim

at
ed

 ri
sk

 o
f m

al
ig

na
nc

y

Figure 3: Violin and dot plots of the estimated probabilities of malignancy based on the ADNEX model

Viewpoint

www.thelancet.com/digital-health Vol 7 December 2025 7

http://www.thelancet.com/digital-health


false positive. The associated decision threshold for these 
misclassification costs is 0⋅1. 18 For expected cost, the nor-
malised cost of a false negative is 0⋅9 (vs 0⋅1 for a false 
positive). We further assume that the range of reasonable 
thresholds is 0⋅05 to 0⋅40 (normalised cost of false negatives 
between 0⋅60 and 0⋅95). The (standardised) net benefit was 
better for ADNEX than for the reference strategies across all 
reasonable decision thresholds (figure 4A–B). The expected 
cost curve gives the same impression (figure 4C). The net 
benefit of the model at t=0⋅1 was 0⋅44. For a normalised cost 
of a false negative of 0⋅9, expected cost was minimised to 
0⋅35 at t=0⋅06.

Results after recalibration
Graphical displays of model performance for the recali-
brated model are shown in the appendix (pp 25–29). The 
calibration plot is closer to the diagonal after recalibration in 
the validation dataset. Table 1 provides all performance 
measures for the ADNEX model before and after recali-
bration. All strictly proper measures improved after recali-
bration. Semi-proper measures either improved or 
remained unchanged. For example, owing to the rank-
preserving updating method, recalibration cannot improve 
discrimination measures such as AUROC as they are based 
on ranks. The improper summary measures for classifica-
tion (except diagnostic odds ratio) worsened remarkably. 
Some partial classification measures improved (sensitivity 
and NPV), whereas others worsened (specificity and PPV). 
The improper measures for overall performance improved. 
The worsening of most improper performance measures 
after recalibration illustrates the importance of the 
properness concept.

Discussion
We evaluated 32 classic and contemporary performance 
measures across five performance domains (discrimin-
ation, calibration, overall performance, classification, and 
clinical utility) for predictive AI models intended for med-
ical practice. When validating the performance of a pre-
diction model, we warn against the use of measures that are 
improper (13 measures) or that do not have a clear focus on 
either statistical or decision–analytical performance (three 
measures; table 2). Remarkably, F1 is the only measure 
violating both characteristics. Improper measures might 
mislead researchers instead of clarifying the performance of 
a model. Measures that conflate statistical and decision– 
analytical performance without properly accounting for 
misclassification costs are ambiguous and should be replaced 
with dedicated measures for clinical utility.
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Figure 4: Decision curves with net benefit, standardised net benefit, and 
expected cost for the ADNEX model
Decision curves with net benefit (A), standardised net benefit (B), and expected 
cost for our case study (C). We show the full x-axis range for educational 
purposes. As explained in the Clinical utility section, a reasonable range of 
decision thresholds is 0⋅05 to 0⋅40. This range corresponds to a range of 
normalised costs between 0⋅05 and 0⋅40 on the curve for expected cost. While

plots (A), (B), and (C) shows results for decision thresholds or normalised costs 
between 0 and 1 for didactical reasons, it is recommended to restrict the x-axis 
to the reasonable range when presenting a decision curve in a validation study. 
(A) also shows a smoothed curve using central moving averages. All refers to the 
net benefit or expected cost of the default strategy to classify all individuals as 
high risk. None refers to the net benefit or expected cost of the default strategy 
to classify all individuals as low risk.
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We argue that performance assessment of predictive AI 
models intended for medical practice should focus on dis-
crimination, calibration, and clinical utility. 90 Discrimin-
ation and calibration aid the modeller and clinician to 
understand how a model can be improved. Poor discrim-
ination indicates that other predictors facilitating improved 
distinction between individuals with and without the event 
could be selected. Miscalibration can compromise pre-
dictive AI application by leading to systematic overtreat-
ment or undertreatment. 89 Miscalibration is often not just a 
problem of the model but a sign that we need to improve 
our understanding of the various contexts in which the 
model is validated and used. 91 Unfortunately, calibration 
measures are still under-reported. 92–94 Overall performance

measures combine discrimination and calibration per-
formance, making them less informative than separate 
assessments of discrimination and calibration perform-
ance. Clinical utility focuses on the decision maker and the 
patient by evaluating whether a model leads to improved 
clinical decisions on average.
We recommend the following core set of measures and 

plots that should be reported: AUROC, a smoothed cali-
bration plot, a clinical utility measure such as net benefit 
with a decision curve, and a figure showing probability 
distributions for each outcome category (table 2). When 
internally validating a predictive AI model, calibration 
might be less important because model development and 
internal validation are based on individuals from the exact

Recommendation Remarks

Discrimination 
AUROC Recommended This measure quantifies discrimination, which is a key component of statistical model 

performance.
AUPRC and pAUROC Inadvisable These measures attempt to move beyond a statistical assessment but violate decision–analytical 

principles.
ROC curve and PR curve Neither inadvisable nor 

essential
These plots provide limited additional information over AUROC.

Calibration
O:E ratio Neither inadvisable nor 

essential
This measure is interpretable but provides only a partial assessment of calibration; O:E ratio is often 
1 or close to 1 during internal validation.

Calibration intercept and 
calibration slope

Neither inadvisable nor 
essential

These measures are hard to interpret and provide a partial assessment of calibration; during 
internal validation, calibration slope can be used to gauge overfitting. 66

ECI, ICI, and ECE Not essential These measures summarise calibration plots, concealing the nature and direction of miscalibration, 
and struggle with statistical consistency.

Calibration plot or reliability 
diagram

Recommended This measure is the most insightful approach to assess calibration, particularly when smoothing is 
used rather than grouping; for internal validation, a plot is preferred but reporting only the 
calibration slope is acceptable; for external validation, a calibration plot is strongly recommended, 
with indications of uncertainty (eg, by 95% CIs).

Overall performance 
Loglikelihood, Brier, R 2 measures Neither inadvisable nor 

essential
We advise to evaluate discrimination and calibration separately. These measures are highly relevant 
for model selection tasks, which are beyond the scope of this Viewpoint.

Discrimination slope and MAPE Inadvisable These measures are improper; ie, values can be better for incorrect models than for the correct 
model.

Risk distribution plots Recommended Displaying the distribution of the risk estimates for each outcome category provides valuable 
insights into a model’s behaviour.

Classification
Classification accuracy, balanced 
accuracy, Youden index, DOR, 
kappa, F1, and MCC

Inadvisable These measures are improper at clinically relevant decision thresholds; in addition, some measures 
are hard to interpret.

Sensitivity (recall) and specificity Not essential; can be 
descriptive if reported 
together

Although improper on their own, they can be presented descriptively if reported together. 
However, these measures are largely theoretical as they condition on the predicted outcome.

PPV (precision) and NPV Not essential; can be 
descriptive if reported 
together

Although improper on their own, they can be presented descriptively if reported together. PPV and 
NPV are highly practical measures because they condition on the classification.

Classification plot Neither inadvisable nor 
essential

Classification plots could be presented descriptively, showing either sensitivity and specificity or 
PPV and NPV by threshold.

Clinical utility
NB or standardised NB (with a 
decision curve) and EC (with a 
cost curve)

Recommended Important measures to quantify to what extent better decisions are made. Decision curves of NB 
allow one to show potential clinical utility at various clinically relevant decision thresholds relative 
to default decisions (and competing models).

AUPRC=area under the precision–recall curve. AUROC=area under the receiver operating characteristic curve. DOR=diagnostic odds ratio. EC=expected cost. ECE=expected 
calibration error. ECI=estimated calibration index. ICI=integrated calibration index. MAPE=mean absolute prediction error. MCC=Matthew’s correlation coefficient. NB=net benefit. 
NPV=negative predictive value. O:E ratio=observed over expected ratio. pAUROC=partial AUROC. PPV=positive predictive value. PR=precision–recall. ROC=receiver operating 
characteristic.

Table 2: Recommendations and remarks for different measures and plots in the context of validating a prediction model to support clinical decision making
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same population. Calibration is more important for exter-
nal validation, when models are evaluated in different 
contexts and populations. Although a calibration plot is 
useful during internal validation, a limited assessment 
using calibration slope and perhaps O:E ratio can suffice; 
however, we would expect an O:E ratio close to 1 for well-
developed models. In addition to the recommended core 
set, PPV in combination with NPV, or sensitivity in com-
bination with specificity, can be reported descriptively. 
These measures are improper when used alone. Reported 
measures and plots should be accompanied by confidence 
intervals when possible, except for clinical utility measures, 
for which quantification of uncertainty is a topic of recent 
debate and research. 95–97

Class imbalance has received a lot of attention for model 
development and performance assessment. We argue that 
class imbalance is not as problematic as often claimed. The 
extent of class imbalance is not mathematically propor-
tional to the extent of imbalance in misclassification costs. 
Class imbalance is related to the target population as an 
epidemiological feature of the data, whereas misclassifica-
tion costs are clinical concepts that relate to the context of 
decision making. Misclassification costs are informed by 
the nature and effect of the medical intervention at hand 
(eg, the decision to perform surgery or not). 21,82,85,98 There-
fore, we advise against using F1, AUPRC, or pAUROC, in 
favour of a dedicated clinical utility measure. 39–46 Of note, we 
do not make claims regarding other situations in health 
care when true negatives are not well defined, such as lesion 
detection. 8

Three topics related to performance assessment deserve 
emphasis: sample size, performance heterogeneity, and 
reporting transparency. First, adequate sample size is 
important to evaluate performance with sufficient preci-
sion. Previous recommendations were to include at least 
100 to 200 individuals in the smallest outcome category. 52,99 

More specific sample size calculations are now available for 
regression-based models. 100 Often, more data are needed 
when comparing calibration between models. 101 Second, 
heterogeneity in model performance should be expected 
based on differences in populations and measurement pro-
cedures between locations, settings, or time periods. 91,102–104 

Meta-analysis and meta-regression methods can be used to 
quantify and understand heterogeneity in performance 
across external validation studies. 102,105,106 Naive comparison 
of models validated using different external datasets, 
reflecting different populations from different settings, can 
lead to wrong conclusions. 36 Third, comprehensive reporting 
of predictive AI modelling studies is imperative, which can 
be done by adhering to the TRIPOD+AI and related report-
ing guidelines. 107–109 To avoid performance hacking, 
increased attention should be paid to publishing protocols in 
advance, as well as to sharing of analysis code and data where 
reasonably possible. 110

A limitation of this Viewpoint is that we focused only on 
performance measures for binary outcomes. Nevertheless, 
the principles also hold for other types of outcomes, such as

nominal, ordinal, time-to-event, or competing risk out-
comes. A second limitation is that we could discuss several 
other topics in depth. We did not address counterfactual 
prediction (prediction under hypothetical interventions), 
which has deservedly gained traction recently. 111,112 Also, 
discussing all measures is impossible, and research on 
performance measures is ongoing. For example, calibra-
tion is an active area of research focusing on aspects such as 
strong calibration, quantifying the degree of miscalibration, 
and uncertainty. 62,113–115 Furthermore, we did not directly 
discuss model comparisons, although head-to-head 
comparisons of competing models on the same external 
validation dataset is of particular importance. 116 A specific 
topic related to model comparison is evaluating the 
incremental value of adding a new predictor to an existing 
model. 117 Although competing models can be evaluated 
using the same core set of measures and visualisations, 
proper overall measures become more interesting for 
tasks such as model selection and comparison. Dedicated 
measures, such as the widely used but improper net 
reclassification improvement, are available for evaluating 
competing models. 48,118,119

In conclusion, we argue that performance measures 
should be proper and clearly focus on either purely statis-
tical or decision–analytical evaluation. To evaluate predict-
ive AI models for medical practice, the recommended core 
set of performance measures that is suitable for most cir-
cumstances include AUROC, calibration plot, a clinical utility 
measure such as net benefit with decision curve analysis, and a 
plot showing the distribution of risk estimates.
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